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Abstract
Objective: Stress-induced phosphoprotein 1 (STIP1) was recently identified as a potential tumor marker for human ovarian cancer. This study
further evaluates the usefulness of STIP1 in ovarian tumor patients with normal CA125 serum levels.
Materials and Methods: STIP1 and CA125 were immunohistochemically analyzed in 84 primary ovarian cancer and 30 benign ovarian tumors in
patients with serum CA125 levels < 35 U/mL before surgery. Histoscores (0e300) were calculated as staining intensities (0e3) multiplied by
percentage of tumor tissue (0e100%).
Results: The cell types of the 84 cancers included 11 serous, 10 clear-cell, 51 mucinous, and 12 endometrioid carcinomas. There were 55
patients with invasive cancer and 29 with borderline ovarian tumors. The histoscores of STIP1, but not of CA125, in invasive
cancer (mean � SD, 186.3 � 82.5) were significantly ( p < 0.0001) higher than those seen in borderline ovarian tumors (86.2 � 85.5).
When the STIP1 histoscore was set at 183.8, invasive cancers (n ¼ 55) were identified from benign tumors (n ¼ 30) with a sensitivity
of 56.4%, a specificity of 93.3%, a positive predictive value of 93.9%, and a negative predictive value of 53.8%. Results of receiver
operating characteristics analysis showed that the area under curve of the STIP1 histoscore was 0.755, which was superior to that of CA125
(0.599).
Conclusion: STIP1 histoscores may be useful in detecting invasive human ovarian cancer in patients with low serum CA125 levels.
Copyright � 2013, Taiwan Association of Obstetrics & Gynecology. Published by Elsevier Taiwan LLC. All rights reserved.
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Introduction

Epithelial ovarian cancers are the most lethal malignancies
in women [1]. Early detection of ovarian cancer and successful
treatment remain challenging for gynecologists. To identify
genetic risk factors of ovarian cancer, genome-wise associa-
tion study approaches [2] have been used, identifying several
risk variants [3e5]. Gene expression variation caused by such
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genetic variants has been recently confirmed in some ovarian
cancer risk alleles [6]. To improve therapeutic efficacy of
advanced ovarian cancer [7], microarray analysis of gene
expression [8] of cancer have been extensively used as a step
toward personalized medicine.

Epithelial ovarian cancers are histologically divided into
serous, mucinous, endometrioid, and clear-cell carcinoma.
Usually, serous tumors are the most common [9], but an
increased prevalence of clear-cell carcinoma has been reported
in Japan and Taiwan [10,11] compared to that of western
countries [12]. Clear-cell cancers are generally considered as
endometriosis-associated ovarian cancer, where mutations of
ARID1A have been identified [13]. During the treatment of
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ovarian cancer, the association with endometriosis often im-
poses additional diagnostic difficulties [14] and surgical
challenges [15] on gynecologists.

Measurement of serum cancer antigen (CA)125 is a stan-
dard practice for the complete assessment of a pelvic mass
[16]. Serum CA125 levels � 35 U/mL are clinically consid-
ered abnormal. However, the sensitivity of CA125 for
detecting epithelial ovarian cancer is only 85% using this
criterion [17]. Elevated CA125 was found less frequently in
patients with stage I disease, mucinous or borderline tumors
[17e19], and premenopausal women [20]. Therefore, more
proteins that may be used as complementary markers for
CA125 in these situations are necessary.

Through a systemic search of biomarkers of human ovarian
cancer by comparing proteomes between tumor interstitial
fluid and normal interstitial fluid, we have identified stress-
induced phosphoprotein 1 (STIP1) as a candidate tumor
marker [21]. Our previous results showed that serum levels of
STIP1 are significantly higher in patients with ovarian cancer
than in age-matched healthy controls. Combined use of
CA125 and STIP1 may increase early detection of ovarian
cancer [21]. The potential of serum STIP1 for detecting human
ovarian cancer was supported by an independent group [22].
Subsequently, we have reported that secreted form of STIP1
promotes proliferation of ovarian cancer cells via binding the
cell membrane receptor ALK2 and activating the SMAD-ID3
signaling pathway [23]. Although we have recently reported
that tissue levels of STIP1 can be used as a prognostic
biomarker for the survivals of ovarian cancer patients [24],
evaluation of the clinical use of STIP1 as a marker in patients
with ovarian cancer is still incomplete. For instance,
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Fig. 1. Study design and analytical steps of this study. Note that two paraffin bl
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immunohistochemistry analysis of STIP in the patients with
low CA125 serum levels (<35 U/mL) has not yet been
reported.

In this study, we collected patients in our hospital with
diagnosed ovarian cancer from 2000 to 2005. We aimed to
compare the tissue expression of STIP1 versus CA125 in pa-
tients with ovarian cancer, focusing on the patients with pre-
operative CA125 levels < 35 U/mL.

Materials and methods
Patients
Clinical specimens for this study were obtained from two
studies (Fig. 1). Specimens of Group A were from a pro-
spective study, and detailed results of serum CA125 and
STIP1 levels were previously published [21]. Group B was a
retrospective study on consecutive patients between 2000
and 2005 in the tumor databank of Chang Gung Memorial
Hospital. Thirty samples of patients with benign tumors
served as controls. Exclusion criteria were: (1) patients who
underwent neoadjuvant therapy before definite surgeries or
who were referred from outside hospitals after initial sur-
geries; and (2) undifferentiated carcinomas that were arisen
from teratomas.
Immunohistochemistry
Using procedures that were reported previously
[21,23e25], archival formalin-fixed paraffin-embedded
ovarian cancer slides of Chang Gung Memorial Hospital were
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Table 1

Characteristics of the ovarian cancer patients with normal serum CA125

(n ¼ 84).

N %

Age Median (range) 44.4 (16e81) NA

Mean � SD 47.0 � 15.92 NA

Stage

I 78 92.9

II 2 2.4

III 4 4.8

IV 0 0

Histologic type

Serous 11 13.1

Mucinous 51 60.7

Endometrioid 12 14.3

Clear 10 11.9

Gradea

I 22 26.2
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analyzed. The slides of 4-mm thick sections were deparaffi-
nized in xylene and rehydrated with a series of graded ethanol.
Sections were then stained with a primary mouse anti-human
STIP1 monoclonal antibody (1:1800; Abnova Corp., Taipei,
Taiwan) or CA125 (SPM111, 1:400; Thermo Fisher, Rock-
ford, IL, USA) using an automated IHC stainer with the
Ventana Basic DAB (3,3-diaminobenzidine) Detection kit
(Tucson, AZ, USA) according to the manufacturer’s protocol.
Counterstaining was performed with hematoxylin. The slides
were examined independently by two pathologists (L.Y.L and
C.H.) without knowing the clinicopathological information.
The overall immunohistochemical score (histoscore) in this
study was the percentage of positive cells multiplied by its
staining intensity (0 ¼ negative, 1 ¼ weak, 2 ¼ moderate,
3 ¼ strong), and ranged from 0 to 300 (100% multiplied by 3)
[23,24].
II 18 21.4

III 5 6.0

Borderline malignancy 29 34.5
Statistical analysis
NA ¼ not applicable; SD ¼ standard deviation
a Clear cell carcinoma and borderline malignancy are not graded.
Differences in histoscore between two groups were

compared using the ManneWhitney U test, and the Krus-
kaleWallis test was used if more than two groups were
compared. Receiver operating characteristic curve analysis
was used to provide sensitivities for the given specificity in the
use of histoscores of STIP1 and CA125. Logistic regression
was used to compare the risk factors of individual variables for
invasive cancer. Cox’s proportional hazards model was used in
a multivariate analysis for the covariates selected from uni-
variate analyses. Multivariate logistic regression was used to
identify the significant risk factors for invasive ovarian cancer.
The multivariate adjusted odds ratios and 95% confidence
intervals were given. For all analyses, p values of <0.05 were
considered statistically significant. The data were analyzed by
the SPSS 17.0 statistical package.

Results
Characteristics of study population
Table 2
A total of 116 patients with ovarian cancer were included in
this study: 32 had serum CA125 levels > 35 U/mL, and 84
patients had serum CA125 < 35 U/mL (Fig. 1). In the group of
ovarian cancer patients with CA125 levels < 35 U/mL, 92.9%
(78/84) were stage I, 60.7% (51/84) were mucinous type, and
34.5% (29/84) were borderline ovarian tumors (BOT; Table 1).
The noncancer control group (n ¼ 30) consisted of mucinous
cystadenoma (n ¼ 10), serous cystadenoma (n ¼ 10), dermoid
cyst (n ¼ 5), fibroma-thecoma (n ¼ 5).
Histoscores of STP1 and CA125 in epithelial ovarian cancer.

Serum CA125

(U/mL)

STIP1

histoscorea
p CA125

histoscorea
p

b b
Immunohistochemical analysis of STIP1 and CA125 in
ovarian cancer tissues
�35 (n ¼ 32) 287.3 � 20.6 <0.0001 85.6 � 67.1 <0.0001

<35 (n ¼ 84) 151.9 � 95.9 27.4 � 50.8

Invasive (n ¼ 55) 186.3 � 82.5 <0.0001b 34.7 � 59.2 0.667b

BOTa (n ¼ 29) 86.2 � 85.5 13.4 � 24.3

BOT ¼ borderline ovarian tumor.
a Histoscore ¼ percentage � intensity.
b Mann-Whitney U test.
Overall, the histoscores of STIP1 in ovarian cancer patients
were significantly higher than the histoscores of CA125. In the
patients with serum CA-125 levels > 35 U/mL (n ¼ 32), both
the mean histoscores of STIP1 and CA125 were significantly
higher than those of patients with serum CA-125 < 35 U/mL
(n ¼ 84; Table 2). However, stratifying the patients with
normal serum CA-125 into invasive cancer and BOT patho-
logical entities, the mean STIP1 histoscore of invasive cancer
was significantly higher than BOT ( p < 0.0001), but this was
not seen with the CA125 histoscore ( p ¼ 0.667; Table 2).
Differential distribution of histoscores between patients with
invasive cancer and those with BOT is illustrated in Fig. 2. The
mean STIP1 histoscore for the 30 benign samples was
103.6 � 80.7.
STIP1 protein is a potential marker for detecting
invasive ovarian cancer
To determine the usefulness of STIP1 as a histological
marker for ovarian cancer, a receiver operating characteristic
was used curve to analyze the histoscores of samples of
ovarian cancer and benign ovarian tumors. The area under the
curve (AUC) was used to compare the value of the two
methods (STIP1 vs. CA125 histoscores) for discriminating
cancer from benign tumors. The highest AUC (0.755) was
achieved by using STIP1 histoscore to discriminate invasive
cancer (n ¼ 55) from benign tumors (n ¼ 30). The AUC was
decreased to 0.649 when the STIP1 histoscore was used to
discriminate the total number of ovarian cancer (invasive plus



Table 3

Values of immunohistochemical analyses of STIP1 and CA125 in ovarian tumor p

Sensitivity (%

STIP1 (cut-off value: 183.8)

Invasive cancer and BOT (n ¼ 84) vs. benign tumor (n ¼ 30) 42.9

Invasive cancer only (n ¼ 55) vs. benign tumor (n ¼ 30) 56.4

CA125 (cut-off value: 2.5)

Invasive cancer and BOT (n ¼ 84) vs. benign tumor (n ¼ 30) 44.0

Invasive cancer only (n ¼ 55) vs. (benign tumor (n ¼ 30) 41.8

AUC ¼ area under curve; BOT ¼ borderline ovarian tumor; NPV ¼ negative p

characteristics.

Fig. 2. Differential distribution of histoscores of (A) STIP1 and (B) CA125

between patients with invasive ovarian cancer (n ¼ 55) and those with

borderline tumor (n ¼ 29). All of these patients (n ¼ 84) had serum CA125

levels < 35 U/mL.
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BOT, n ¼ 84) from benign tumors (n ¼ 30). The AUCs of
CA125 histoscore were low, suggesting that it is of minimal
use for these in distinguishing ovarian cancer from benign
tumors (Table 3). In the 84 cases of ovarian cancer and 30
benign tumors, the histoscore that could result in the maximal
sum of specificity and sensitivity was selected as the cutoff
point. The cutoff points were 183.8 for STIP1 and 2.5 for
CA125 (Table 3). Using these cutoff points, sensitivity, spec-
ificity, positive predictive value, and negative predictive value
are summarized in Table 3.
Correlations between STIP1 histoscores and
clinicopathological parameters
The correlations between STIP1 histoscores and clinico-
pathological parameters of 84 patients with normal CA125 are
summarized in Table 4. Old age (� 50 years), advanced stage,
tumors with nonmucinous (serous carcinoma, clear-cell car-
cinoma, or endometrioid carcinoma), and invasive cancer en-
tities were significantly associated with higher histoscores.
High (II and III) grades of the tumors were marginally asso-
ciated with higher histoscores (Table 4). Results of both uni-
variate and multivariate analyses also indicated that high
STIP1 histoscores were significantly associated with invasive
cancers (Table 5).
Patient outcome
Of the 84 ovarian cancer patients with normal CA125, 14
patients had recurrences or persistent disease. Nine of them
died of the disease (Table 6). All patients with stage IIIC
disease succumbed to their disease. All except one had STIP1
that stained strongly (intensity � 2). This particular patient
(OV-316) had undergone laparoscopic surgery for a tumor that
was suspected to be benign, but final pathology results
revealed papillary serous ovarian cancer. She subsequently
received staging laparotomy within one month but had a
recurrence 1 year later.

Discussion

STIP1 (GeneID 10963; HPRD 05454) is a 62.6 kDa protein
that has been found in melanoma [26], hepatocellular carci-
noma [27], glioma [28], and pancreatic cancer [29]. STIP1
atients with normal serum CA125.

) Specificity (%) PPV (%) NPV (%) Accuracy (%) AUC of ROC

93.3 94.7 36.8 56.1 0.649

93.3 93.9 53.8 69.4 0.755

73.3 82.2 31.9 51.8 0.596

73.3 74.2 40.7 54.9 0.599

redictive value; PPV ¼ positive predictive value; ROC ¼ receiver operating



Table 4

Clinicopathological characteristics and STIP1 histoscore in ovarian cancer

patients with normal serum CA125.

Characteristics Patient (n ¼ 84) STIP1 score p

Age

<50 47 (56.0%) 124.6 � 95.4 0.002b

�50 37 (44.0%) 186.3 � 85.9

Stage

I 78 (92.9%) 145.7 � 95.6 0.017b

�II 6 (7.1%) 230.0 � 61.2

Histologic type

Mucinous 51 (60.7%) 114.5 � 88.6 <0.0001c

Serous 11 (13.1%) 191.8 � 97.2

Clear cell þ endometrioid 22 (26.2%) 218.2 � 65.3

Gradea

I 22 (48.9%) 151.6 � 86.4 0.049b

II and III 23 (51.1%) 199.5 � 71.7

BOT vs Invasive cancer

BOT 29 (34.5%) 86.2 � 85.5 <0.0001b

Invasive cancer 55 (65.5 %) 186.3 � 82.5

BOT ¼ borderline ovarian tumor.
a Clear cell carcinoma and borderline malignancy are not graded.
b Mann-Whitney U test.
c Kruskal-Wallis test.

Table 6

Ovarian cancer patients with CA125 less than 35 U/ml who died of the disease

(n ¼ 9).

Patient Cell type Stage Grade Relapse Age at

diagnosis

Histoscore

STIP1 CA125

OV-0563 Endometrioid IIIC 2 Persistent 63 225 0

OV-0181 Clear cell IIIC Persistent 52 270 0

OV-0137 Endometrioid IC 2 Relapse 53 150 25

OV-0049 Clear cell IIC Persistent 56 225 0

OV-0439 Mucinous IA 1 Relapse 34 270 0

OV-0316 Papillary

serous

IC 1 Relapse 30 30 200

OV-0542 Papillary

serous

IIIC 3 Persistent 66 240 200

OV-0614 Papillary

serous

IIIC 3 Persistent 44 300 0

OV-0328 Mucinous IC 2 Persistent 80 225 0
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protein contains nine tetratricopeptide repeats motifs clus-
tering into three domains, which form scaffolds that mediate
formation of different protein complexes. Thus STIP1 partic-
ipates in various biological processes, including RNA splicing,
transcription, protein folding, signal transduction, and cell
cycle regulation [30,31]. As a phosphoprotein, STIP1 is
phosphorylated by Cdc2 kinase, which is accompanied by
cytoplasmic translocation of STIP1 [31]. The presence of
STIP1 in various types of cancer suggests that STIP1 has
antiapoptotic or progrowth nature, or both. Knockdown of
STIP1 was shown to suppress the invasiveness of pancreatic
cancer cells [29]. A glioblastoma cell line has been shown to
secrete STIP1 into culture medium, and recombinant STIP1
can induce the proliferation of glioma cells by activating the
ERK and PI3K pathways [28]. We also previously showed that
STIP1 secreted by ovarian cancer cells promotes cell prolif-
eration [21] and that cancer STIP1 levels can be used as a
Table 5

Univariate and multivariate analyses regarding detection of invasive ovarian cance

Characteristics Univariate analysis

BOT IC OR 95% CI

Age

<50 18 29 1

�50 11 26 1.47 0.59e3.6

Stage

I 29 49 d d
�II 0 6

Histologic type

Mucinous 28 23 1

Others 1 32 38.96 4.94e307

STIP1 histoscore

<183.8 24 24 1

�183.8 5 31 6.20 2.06e18.

BOT ¼ borderline ovarian tumor; CI ¼ confidence interval; IC ¼ invasive cancer
prognostic biomarker for ovarian cancer patients [23]. Herein
we demonstrate the usefulness of STIP1 histoscores in ovarian
cancer patients with serum CA125 levels < 35 U/mL.

Of note, STIP1 histoscores were highest in the clear-cell
and endometrioid cancer groups (Table 4). Clear-cell tumor
is a distinct histological type of epithelial ovarian cancer,
which is frequently diagnosed at early stages but often recur
even after primary chemotherapy [32]. According to Cancer
Registry of the Department of Health in Taiwan [10], the
prevalence of histological types of ovarian cancer are different
from that seen in western countries. In Taiwan, serous carci-
nomas remained the most common cell type, and the per-
centages of serous, mucinous, endometrioid, clear-cell, and
undifferentiated was 34.5%, 16.5%, 14.8%, 14.5%, and
19.6%, respectively. Notably, the incidence of clear-cell car-
cinomas in Taiwan (14.5%) was higher than the 5e10% seen
in Western countries, but similar to that in Japan, which was
20e25% [12]. In the consecutive 403 cases in our institution
between 2000 and 2005 (Group B of Fig. 1), 21.6% (79/365)
of cases had serum CA125 < 35 U/mL. Of the 79 cases with
CA125 < 35 U/mL, one-third (23 cases) were found to be
clear-cell and endometrioid carcinoma. A biomarker to com-
plement CA125 is urgently needed for this group of patients.
r from borderline ovarian tumor.

Multivariate analysis

p OR 95% CI p

0.413

7

d

0.001 1 3.53e229.7 0.002

.30 28.47

0.001 1 1.0e12.0 0.049

65 3.48

; OR ¼ odds ratio.
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Clear-cell and endometrioid carcinomas have been linked
to endometriosis [9], but the molecular pathology of clear-cell
carcinoma remains unclear. Endometrioid carcinomas are re-
ported to be characterized by K-RAS activation and PTEN
dysfunction [33]. On the contrary, tumorigenesis of clear-cell
carcinoma is heterogeneous, involving loss of heterozygosity
[34], dysfunctions of signaling pathways of early mitotic
inhibitor-1 [35] and mutations in mammalian target of rapa-
mycin [36] and K-RAS mutation [37]. Clinically, about 60%
of patients with stage I clear-cell carcinomas show resistance
to chemotherapy [38]. Based on our previous findings that
treatment of ovarian cancer cells with STIP1 significantly in-
duces ERK phosphorylation, promotes DNA synthesis, and
increases Ki-67 immunoreactivity in ovarian cancer cells [21],
we speculate that STIP1 may be involved in development of
chemotherapy resistance by clear-cell carcinomas.

CA125 is a useful serum marker that is elevated in 85% of
nonmucinous epithelial ovarian cancers [39]. We have had a
similar detection rate (79.4%) of epithelial ovarian cancer in
our cohort (Fig. 1). Although the lack of elevation in serum
CA125 is more common in mucinous and borderline ovarian
tumors [17e19], serum levels of CA125 usually correlate with
the size of residual cancer after debulking surgery [40]. In the
small portion of invasive cancers with normal CA125 serum
levels, elevated STIP1 histoscores resulted in a 69.4% accu-
racy rate of cancer detection (Table 3). Because there were
only 42 cases with known serum levels of both CA125 and
STIP1 in this study (Fig. 1), correlation of cancer expression
of STIP1 and serum STIP1 in patients with ovarian cancer is
yet to be confirmed by further studies with larger sample sizes.

In conclusion, this is the first immunohistochemical study
on tissue expression of STIP1 in ovarian cancer patients with
normal serum CA125 levels. Since Taiwan and Asia have an
unexplained higher incidence of clear-cell carcinoma, the
potential use of STIP1 in nonmucinous tumors, including
clear-cell carcinoma and endometrioid carcinoma, warrants
further investigation.
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