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Abstract
Objective: To investigate the relationship between single nucleotide polymorphisms (SNPs) of the genes encoding the estrogen receptor 1
(ESR1) and the receptor activator of nuclear factor kappa B ligand (RANKL) and bone mineral density (BMD) in postmenopausal Taiwanese.
Materials and Methods: Five ESR1 SNPs and three RANKL SNPs in 467 women were genotyped. Results of genotyping were correlated with
BMD that had been adjusted for body mass index (BMI), age, and years after menopause.
Results: Those with the ESR1 Crs1884054 allele were found to have a lower BMD at LS2e4/Lateral view ( p ¼ 0.005 and permutated p ¼ 0.046),
and those with the ESR1 haplotype Trs2234693-Ars922996 had a higher risk for low BMD also at LS2�4/Lat (OR ¼ 1.8, 95% CI ¼ 1.1-2.9). In
addition, women without the RANKL haplotype Grs2148072-Crs2200287-Grs922996 had a higher risk for low BMD at LS1�4/AP (OR ¼ 2.09, 95%
CI ¼ 1.21 w 3.64). Stratification analyses revealed that those with ESR1 AArs1884054 and RANKL Ars2148072 ( p ¼ 0.032) or RANKL Trs2200287

( p ¼ 0.007) had a lower BMD at LS1�4/AP.
Conclusion: Genotypes of these SNPs of ESR1 and RANKL may help us predict the osteoporosis risk in menopausal women.
Copyright � 2013, Taiwan Association of Obstetrics & Gynecology. Published by Elsevier Taiwan LLC. All rights reserved.
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Introduction

Osteoporosis is a condition of decreased bone mass. The
chance of developing osteoporosis increases with age, and
the prevalence of osteoporosis is higher in females. Bone
mineral density (BMD) is a useful indicator for assessment of
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osteoporosis. In twin and family studies, 50-80% of variations
in BMD are attributed to genetic factors [1e3]. More than 100
candidate genes related to BMD have been found, including
those of the sex steroid and the OPG-RANK-RANKL path-
ways [2,3]. Estrogen plays a critical role in bone homeostasis
as shown in the observation that women experience an
accelerated loss of bone mass after menopause when their
serum estrogen levels start to decrease [4]. Low estrogen
levels lead to imbalanced bone metabolism and increased
production of pro-inflammatory cytokines such as IL-1, IL-6,
and TNF-a [5]. IL-6 facilitates the proliferation of osteoclast
cs & Gynecology. Published by Elsevier Taiwan LLC. All rights reserved.
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precursors, while IL-1 and TNF-a enhance the function of
osteoclasts, thus increasing bone resorption.

Another important factor that promotes bone resorption is
the signal cascades activated by the receptor activator of nu-
clear factor kappa B ligand (RANKL). RANKL binds to its
receptor RANK on osteoclast precursor cells and activates
osteoclastogenesis leading to an increase in the number of
osteoclasts and a decrease in BMD [6]. RANKL also enhances
the function and survival of osteoclasts and exacerbates bone
resorption. Estrogen prevents bone loss by decreasing the
production of RANKL in bone marrow cells [7], thus inhib-
iting the ability of hematopoietic cells to form osteoclasts in
response to RANKL. Therefore, the interaction between es-
trogen and RANKL is one of most important factors in speedy
bone loss after menopause.

The functions of estrogen are mainly mediated through its
receptor, estrogen receptor 1 (ESR1). Studies have shown that
ESR1 knockout mice exhibit a severe bone loss [8], whereas
RANKL knockout mice display a decreased number of osteo-
clasts and severe osteopetrosis [9]. Since both ESR1 and
RANKL have major effects on BMD, a number of studies on
ESR1 and RANKL (also known as TNFSF11) genes have been
conducted. Both ESR1 [10,11] and RANKL [12,13] genes have
been found to be significantly associated with BMD. However,
the results on the association of SNPs of these two genes with
spine or hip BMD in postmenopausal women remain contro-
versial, probably owing to the differences in race. Therefore,
we decided to determine the association between the poly-
morphisms of ESR1 and RANKL and BMD in a Taiwanese
postmenopausal population. The effects of gene-gene inter-
action between ESR1 and RANKL on BMD were also inves-
tigated in this study.

Materials and methods
Study participants
Participants, aged 45-63 years, were selected from the
volunteers who visited the Menopause Health Education
Clinic at the Chang Gung Memorial Hospital-Kaohsiung
Medical Center, Taiwan, between August 2002 and
December 2007. None of the women had any history of major
surgeries, such as bilateral oophorectomy or hip or joint
replacement. Patients with conditions that may affect bone
mass were excluded, including chronic disorders of vital
organs, metabolic diseases (diabetes, hypo- or hyper-
parathyroidism, and hyper- or hypothyroidism), skeletal
diseases (Paget’s disease, osteogenesis imperfecta, and rheu-
matoid arthritis), and malnutrition conditions, such as those
resulting from chronic diarrhea or ulcerative colitis. Chronic
users of drugs that may affect bone metabolism such as
corticosteroid, anticonvulsions, anti schizophrenia, antibone
resorption, and immunosuppressive drugs were also excluded.
A total of 500 healthy postmenopausal women who met the
criteria were selected. Informed consents were obtained from
each woman. The study protocol was approved by the Insti-
tutional Review Board of Chang Gung Memorial Hospital.
Measurements of BMD and other covariates
BMD (g/cm2) of the lumbar spine LS1-LS4 AP (LS1�4/AP)
view and LS2-LS4 lateral (LS2�4/Lat) view, total hip, and
femur neck was measured using a dual energy X-ray absorp-
tiometer (DXA, Hologic Delphi A, MA, USA). The T-scores
that indicate the quality of bone mass were calculated auto-
matically by built-in software using the data of healthy
American-Japanese women as the reference. Body height was
measured using a fixed stadiometer, and body weight without
shoes was measured on a standard clinical scale. BMI was
calculated as kg/m2. The weekly intake of calcium of each
woman was estimated on the basis of the consumption of
calcium and multivitamin supplements and high-calcium
content foods such as dried tofu, dried small fish or shrimps,
seaweeds, and green beans.
SNP genotyping
Genomic DNA was extracted from 300 mL of peripheral
blood from each woman using the Puregene DNA purification
kit (Gentra system, USA), dissolved in 100 mL of the DNA
hydration solution in the kit, and stored in a -20 �C freezer
until used. The concentration of each DNA sample was
approximately 100 mg/ml. The entire gene and 2 kb on both 5ʹ
and 3ʹ sides of the gene of both ESR1 and RANKL were
searched for tag SNPs (tSNPs) that are representative SNPs of
a certain haploblock. Only the tSNPs with a pair-wise linkage
disequilibrium value r2 > 0.8 and a minor allele frequency
>0.2 in the Han Chinese reference panel (CHB) of the In-
ternational HapMAP Project were selected [14]. The ESR1
tSNPs selected for this study included rs9340954, rs1884054,
rs3020314, rs9340799, rs2234693, and rs3798577. For
RANKL tSNPs, rs922996, rs2200287, and rs2148072 were
selected. All of these SNPs were located in introns (Fig. 1)
[11]. A small fragment of 200-650 bp containing a certain
SNP in the genome of each woman was amplified by PCR.
The PCR products were then used to perform allele-specific
extensions, and the extended products were analyzed by ma-
trix assisted laser desorption/ionization time-of-flight
(MALDI-TOF) mass spectrometry as described previously
[15e17]. Oligonucleotide primers used for SNP genotyping
are shown in Tables 1 and 2.
Statistical analyses
The Hardy-Weinberg equilibrium (HWE) test was per-
formed for each SNP to determine whether the distribution of
its allele frequency deviates from expectation. The association
between SNP and adjusted BMD and the effects of gene-gene
interaction on BMD were assessed by the additive linear
regression analysis. BMD was adjusted for age, BMI, and
years after menopause. Haplotype and haploblock were con-
structed by using the Haploview. All other statistical analyses
were performed using the software SPSS (version 15.0; SPSS
Inc., Chicago, IL). A p value <0.05 was considered significant
after being corrected for multiple tests by the permutation scan
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Fig. 1. Locations of various SNPs examined in this study. (A) ESR1. (B) RANKL. Boxed regions are exons. Numbers in parentheses are nucleotide numbers. ESR1

is located at human chromosome 6q25.1, and RANKL is located at 13q14. ESR1 rs2234693 and rs9340799 were previously referred to as PvuII and XbaI RFLP

sites, respectively [11].
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statistics. Odds ratios were determined by logistic regression
analysis and used to assess the strength of association of
various genotypes with normal or low BMD.

Results
Baseline demographics of participants
The mean year after menopause of all participants was
2.64 � 2.3, and 85.4% of the women had menopause for less
than or equal to 5 years. Demographics and relevant clinical
information of the participants, including age, years after
menopause, body weight and height, BMI, BMD at various
anatomic regions, serum levels of FSH and E2, and average
weekly calcium intake, are summarized in Table 3.
Allele frequencies of selected RANKL and ESR1 tSNPs
and their associations with BMD
Six ESR1 and three RANKL tSNPs of each woman were
genotyped, and 467 of the 500 participants were successfully
typed for all the tSNPs. For ESR1, the minor allele frequencies
(MAFs) of tSNPs rs9340954 (A > G), rs1884054 (C > A),
rs3020314 (C > T), rs9340799 (T > G), and rs2234693
Table 1

PCR primers for amplification of regions containing SNP.

SNP Forward primer sequence

RANKL rs2148072 ATGGGAAACAGATCCCCTTG

RANKL rs2200287 TCAGAGCTGGCTCAATCTCA

RANKL rs922996 TCCTTCTCTAGAGGCCCACA

ESR1 rs2234693 CATGAACCACCATGCTCAGT

ESR1 rs9340799 CATGAACCACCATGCTCAGT

ESR1 rs3020314 TGGACCAGTAAACCCTGCTC

ESR1 rs1884054 CACAGGTTCCTCTCCTCCAG

ESR1 rs9340954 TTGCCATGGATTCCTAGTCC

ESR1 rs3798577 TGCATGATGAGGGTAAATGG
(T > C) were 43.3%, 31.2%, 19.7%, 20.6%, and 40.9%,
respectively (Table 4). For RANKL, the MAFs for tSNPs of
rs922996 (A > G), rs2200287 (T > C), and rs2148072
(A > G) were 48.4, 19.2, and 19.3%, respectively (Table 4).
These MAFs were very similar to those of the Beijing Han
population in the International HapMap project (HapMap
Build 35). Genotype distribution of ESR1 rs3798577 was
deviated from HWE with a p < 0.0001; therefore, this tSNP
was excluded for further analysis. With the genetic additive
dominant modeling, only the ESR1 rs1884054 (C > A)
polymorphisms were found to have a significant correlation
with BMD at LS2�4/Lat ( p ¼ 0.004; pc ¼ 0.046) after
correction for multiple tests by full scan permutation analysis
(Table 4). Participants with the ESR1 Crs1884054 allele were
found to have a lower BMD at LS2�4/Lat than those with the
AA genotype.
BMD T-scores at four different bone sites and their
relationship with ESR1 rs1884054
Based on the built-in reference BMD values in the DXA
system, the individuals were divided into two categories,
normal T-score (��1.0 SD) and low T-score (<�1.0 SD),
according to the WHO criteria. Those with the ESR1
Reverse primer sequence Length (bp)

CAAAGGGAAAGAGGCAATGA 647

GTTTGGGGCAGTTATTCAGC 501

TTTCTGGACAGAGGGATTGG 225

ACCAATGCTCATCCCAACTC 269

AGACCAATGCTCATCCCAAC 300

TGCATATTGCCAGTCCAGAG 401

CAAAGGGCCAAGTTCCATAA 494

GCTTTCTCTGGTGCCTGAAC 511

CCTAGGTAGCTGCAGCCTGT 205



Table 2

Primers used for allele-specific extension and mass of extended products.

Allele Primer for extension reaction Mass of allele 1a Mass of allele 2b

RANKL rs2148072 G/A GCCACTATTTCTCATTT G ¼ P þ G, 5399.5 A ¼ P þ AC, 5672.6

RANKL rs2200287 C/T CATTTACAGCAAAGGATACG C ¼ P þ C, 6407.1 T ¼ P þ TC, 6711.3

RANKL rs922996 C/T GCCATCCAACGGTGGGGCAA C ¼ P þ C, 6425.1 T ¼ P þ TC, 6729.3

ESR1 rs2234693 C/T AGTTCCAAATGTCCCAGC C ¼ P þ C, 5716.6 T ¼ P þ TG, 6060.9

ESR1 rs9340799 G/A GACCCTGAGTGTGGTCT G ¼ P þ G, 5530.6 A ¼ P þ AG, 5843.8

ESR1 rs3020314 C/T TCCTGGAGAGATGACAGAAG C ¼ P þ C, 6488.1 T ¼ P þ TC, 6792.3

ESR1 rs1884054 C/A TTTGTAGGGAAGCAAAT C ¼ P þ C, 5546.5 A ¼ P þ AC, 5859.7

ESR1 rs9340954 G/T TGTATCAGCGTCAATGTCTGAGT G ¼ P þ G, 7382.8 T ¼ P þ TG, 7687.0

ESR1 rs3798577 T/C TGGGGCATGGAGCTGAACAGTAC T ¼ P þ T, 7441.7 C ¼ P þ CT, 7730.9

a Unextended product; b Extended product.
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Crs1884054 allele had a higher risk for low bone mass than
those with the AA genotype at all bone sites examined,
including LS2�4/Lat (OR ¼ 2.54, p ¼ 0.006), LS1�4AP
(OR ¼ 1.84, p ¼ 0.03), total hip (OR ¼ 3.26, p ¼ 0.008), and
femur neck (OR ¼ 1.93, p ¼ 0.02) (Table 5).
Linkage disequilibrium between SNPs in RANKL and
ESR1 genes and haplotype frequencies in relation to
BMD T-scores
Table 4

Multiple linear regression analyses of additive genetic modeling for associa-

tions between various SNPs and BMD at different bone sites.

SNPs MAF (%) LS1�4/AP Total hip LS2�4/Lat Femur

neck

pa pb pc pd

ESR1 rs9340954 43.3 1 1 1 1
Values (r2) of pair-wise linkage disequilibrium of various
RANKL SNPs were determined and only rs2148072-
rs2200287 and rs3742257-rs922996 pairs were found to
have significant linkage disequilibrium with r2 values of 0.92
and 0.94, respectively (Table 6). Among a total of 11 RANKL
tSNP haplotypes, the haplotype Grs2148072-Crs2200287-
Grs922996 was predominant with a population frequency of
51.1% (Table 7). Women without this haplotype were found to
have a higher risk for low BMD at LS1�4/AP with an odds
ratio of 2.09 (95% CI: 1.21e3.64) as determined by the lo-
gistic regression analysis, followed by adjustment for multiple
tests. For ESR1 haplotypes, the only significant linkage
disequilibrium was found between the Trs2234693 and
Table 3

Demographics of the 467 menopausal women.

Mean SD Min Max 95% CI

Age (y) 51.7 4.2 45.0 63.0 47.0e60.0
Years after

menopause

2.8 2.4 1.5 14.0 2.35e8.0

Weight (kg) 57.2 8.2 40.0 88.8 43.1e74.0
Height (cm) 156.1 5.0 143.0 173.0 146.0e166.0

BMI (kg/m2) 23.3 3.1 18.3 30.2 18.4e30.4

BMD at LS1�4/AP

(g/cm2)

0.921 0.131 0.581 1.345 0.7e1.2

BMD at LS2�4/Lat

(g/cm2)

0.676 0.117 0.586 1.086 0.65e0.9

BMD at total hip

(g/cm2)

0.844 0.107 0.465 1.151 0.647e1.068

BMD at femur

neck (g/cm2)

0.719 0.103 0.416 1.127 0.527e0.943

FSH (IU/dL) 62.1 27.3 34.0 159.0 39.7e122.2
E2 (pg/dL) 27.5 33.4 5.0 35.6 24.3e30.7

Calcium intake

per wk (mg)

4283.2 2254.7 220 15100 909e9579

BMD¼ bone mineral density; E2 ¼ 17-estradiol; FSH ¼ follicular stimulating

hormone.
Ars9340799 alleles (Dʹ ¼ 95, r2 ¼ 0.34) (Table 6), and
those with this haplotype had a higher risk for low BMD at
LS2�4/Lat (OR ¼ 1.80, 95% CI ¼ 1.1-2.9) (Table 8).
Gene-gene interactions in relation to BMD
Gene-gene interaction analyses revealed that participants
with combinations of ESR1 rs1884054 AA and RANKL
rs2148072 A allele had a lower BMD than those with ESR1
rs1884054 AA and RANKL rs2148072 GG genotypes
(0.832 � 0.080 vs. 1.029 � 0.047 g/cm2, p ¼ 0.04) (Fig. 2A).
Similarly, those with combinations of ESR1 rs1884054 AA
and RANKL rs2200287 T allele had a lower BMD than those
with ESR1 rs1884054 AA and RANKL rs2200287 CC geno-
types (0.810 � 0.076 vs. 1.061 � 0.046 g/cm2, p ¼ 0.008)
(Fig. 2B).
(T > G)

ESR1 rs1884054

(C > A)

31.2 0.326 0.244 0.046* 1

ESR1 rs3020314

(C > T)

19.7 0.221 0.06 0.655 0.291

ESR1 rs9340799

(A > G)

20.6 0.999 1 1 1

ESR1 rs2234693

(T > C)

40.9 1 0.998 0.791 1

RANKL rs922996

(A > G)

48.4 0.181 1 0.996 1

RANKL rs2200287

(C > T)

19.2 0.693 1 1 0.901

RANKL rs2148072

(G > A)

19.3 0.505 0.996 1 0.663

Equation for multiple linear regression: Y ¼ b � SNP þ a1 � age þ a2 �
BMI þ a3 � years from menopause þ r.

MAF ¼ minor allele frequency.

*Statistically significant p < 0.05.
a Corrected p value for multiple tests by full scan permutation for BMD at

lumbar spine AP view; b Corrected p value for multiple tests by full scan

permutation for BMD at total hip; c Corrected p value for multiple tests by

full scan permutation for BMD at lumbar spine lateral view; d Corrected p

value for multiple tests by full scan permutation for BMD at femur neck.



Table 5

ESR1 rs1884054 genotypes and BMD T-scores.

ESR1 rs1884054 AC and CC

(No. of individuals)

AA (No. of

individuals)

ORa p

LS2�4Lat T-score <�1.0 268 16 2.54 0.006

T-score ��1.0 158 24

LS1�4AP T-score <�1.0 175 11 1.84 0.03

T-score ��1.0 251 29

Total hip T-score <�1.0 61 1 3.26 0.008

T-score ��1.0 365 39

Femur neck T-score <�1.0 167 10 1.93 0.02

T-score ��1.0 259 30

OR ¼ odds ratio.
a OR adjusted for years after menopause.

Table 7

RANKL and ESR1 haplotype frequencies.

Haplotype Frequency (%)

RANKL G-C-G 51.1

RANKL G-C-C 28.8

RANKL A-T-A 18.6

RANKL G-T-A 0.6

RANKL A-C-G 0.4

RANKL A-C-A 0.3

RANKL G-T-G 0.1

RANKL others 0.1

ESR1 T-A 58.6

ESR1 C-A 20.9

ESR1 C-G 20.5

RANKL haplotype: rs2148072 (A > G), rs2200287

(T > C), and rs922996 (A > G). , ESR1 haplotype:

rs2234693 (T > C) and rs9340799 (G > A).

Table 8

Association between haplotype and normal (��1.0) and low (<�1.0) BMD

T-scores at lumbar spine.

Haplotype copy T-score ��1.0 T-score <�1.0 Odds ratioa 95% CI
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Discussion

In this study, we investigated five ESR1 and three RANKL
SNPs for their potential association with BMD in 467 post-
menopausal Taiwanese and provided evidence for a statisti-
cally significant association between genetic variations in
ESR1 and RANKL genes and BMD for the first time in
Taiwanese population. We found that participants with the
ESR1 Crs1884054 allele had a significant lower BMD at
LS2�4/Lat than those with the ESR1 AArs1884054 genotype
(Table 5 and Fig. 2). In addition, individuals with the ESR1
Trs2234693-Ars922996 haplotype had a higher risk for low BMD
at LS2�4/Lat (OR ¼ 1.8, 95% C.I. ¼ 1.1-2.9) (Table 6). Those
without the RANKL Grs2148072-Crs2200287-Grs922996 haplotype
also had a higher risk for low BMD at LS1�4/AP (OR ¼ 2.09,
95% CI ¼ 1.21-3.64) (Table 8). Stratification analyses
revealed that the interaction between the ESR1 AArs1884054

genotype and the RANKL Ars2148072 allele ( p ¼ 0.032) or
Trs2200287 allele ( p ¼ 0.007) might result in a lower BMD at
SL1�4/AP (Fig. 2). Successful linking of these two genes to
BMD might be attributed to the homogeneity of the study
participants as the great majority of them were in the early
postmenopausal stage. Unlike several other studies in which
the mean year after menopause was over 10 years, ours was
2.6 years; therefore, the chance for bias in population strati-
fication was minimal.

The ESR1 rs1884054 is located only 200 bp away from
ESR1 rs1884052 that was investigated by the Framingham 100
k genome-wide association study (GWAS) [18]. This GWAS
examined 241 families, including 159 original and 487
offspring women of predominantly Caucasians and found that
ESR1 rs1884052 and rs3778099 are two of the top 40 SNPs
Table 6

Linkage between various SNP pairs.

SNP Pair Dʹ r2

RANKL rs2148072-rs2200287 0.97 0.92

RANKL rs2200287-rs922996 1.00 0.24

RANKL rs2148072-rs922996 0.98 0.23

RANKL rs3742257-rs922996 0.96 0.94

ESR1 rs2234693-rs9340799 0.95 0.34

Dʹ ¼ pair-wise linkage disequilibrium; r2 ¼ correlation coefficient.
significantly associated with BMD at femur neck. The ESR1
Crs1884054 allele wassignificantly related to low BMD at all
bone sites examined in this study. Therefore, it is conceivable
that the ESR1 rs1884054 C > A polymorphisms are associated
with low BMD.

The relationship between ESR1 polymorphisms and BMD
was first described in a Japanese population (45e91 years
old) by Kobayashi et al [19]. They found that ESR1 exhibits
PvuII and XbaI restriction fragment length polymorphisms
and that the Px haplotype is associated with low BMD in
menopausal women, where P represents those without the
PvuII restriction site (C allele), and x indicates those with the
XbaI site (A allele) in the ESR1 gene. The PvuII recognition
sequence CAGCTG is now known as ESR1 rs2234693 (the
5th ESR1 SNP listed in Table 4) in which the fifth base of the
sequence CAGCTG is polymorphic and may be T or C, with
C being the minor allele [20]. The XbaI recognition sequence
TCTAGA is now known as ESR1 rs9340799 (the 4th ESR1
SNP listed in Table 4) in which the fourth base of the
sequence TCTAGA may be G or A. The G allele is minor and
is denoted by X (XX ¼ GG, xx ¼ AA) [20]. However,
another study, also in a Japanese population, showed no sig-
nificant association of the PvuII polymorphism with BMD,
but participants with the XbaI GG genotype were found to
number

RANKL G-C-Ga N (%) N (%)

2 79 (28.2) 34 (18.2) 1.00

1 138 (49.3) 94 (50.3) 1.61 0.99e2.65

0 63 (22.5) 59 (31.6) 2.09 1.21e3.64
ESR1 T-Ab N (%) N (%)

0 43 (23.6) 41 (14.8) 1.00

2 or 1 139 (76.4) 237 (85.2) 1.80 1.1e2.9

a RANKL haplotype: rs2148072 (A > G), rs2200287 (T > C), and rs922996

(A > G); odds ratio significant at bone sites LS2�4Lat and LS1�4AP;
b ESR1

haplotype: rs2234693 (T > C) and rs9340799 (G > A); odds ratio significant

at bone site LS2�4Lat.
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Fig. 2. Stratification analyses for correlations between ESR1-RANKL interactions and BMD LS1�4/AP. (A) Participants with the ESR1 AArs1884054 genotype and the

RANKL Ars2148072 allele had significantly lower BMD than those with ESR1 AArs1884054 and RANKL GGrs2148072 genotype ( p ¼ 0.04). (B) Participants with the

ESR1 AArs1884054 genotype and the RANKL Trs2200287 allele had significantly lower BMD than those with ESR1 AArs1884054 and RANKL CC rs2200287 genotype

( p ¼ 0.007).
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have a lower BMD than those with the A allele [21]. In a third
study of a Japanese-American population [22], individuals
with the PvuII CC or TC genotype had a lower lumbar spine
BMD than those with the TT genotype. These results were
opposite to that of Kobayashi et al [19,22]. In our study, the
ESR1 px (Trs2234693-Ars922996) haplotype was found to be
significantly related to a higher risk for low BMD at LS2�4/
Lat (OR ¼ 1.8, 95% CI ¼ 1.1-2.9) (Table 4). Our results were
consistent with those of Binh et al, where they found that
postmenopausal Vietnamese with the px haplotype had
increased osteoporosis risk [23]. Our results also agree with
those of the meta-study of 20,000 Caucasians by Ioanni et al,
where they found that participants with XbaI XX
(rs9340799GG) and PvuII PP (rs2234693CC) (PX) genotypes
had a slightly better BMD than those with other XbaI and
PvuII genotypes [11]. By contrast, in another meta-analysis
study of results published between 1994 and 2006 involving
approximately 4,000 Chinese, the PvuII PP (rs2234693CC)
genotype was found significantly associated with low BMD at
femur neck (difference: �0.011, 95% CI ¼ 0.022-0.000,
p ¼ 0.047) but not at lumbar spine. These discrepancies are
likely owing to the different frequencies of ESR1 rs2234693
and rs9340799 polymorphisms in different ethnic
populations.

The three RANKL tSNPs, rs2148072, rs2200287, and
rs922996 investigated in this study are located in the same
haploblock at chromosome locations 42060063, 42066660,
and 42076671, respectively (Fig. 1). All of these tSNPs have a
minor allele frequency greater than 19% in our study popu-
lation. A recent meta-analysis found that RANKL is one of the
nine osteoporosis candidate genes [12,13], and many RANKL
SNPs have been found to be associated with BMD. For
example, rs9594766 and rs2062305 are associated with lumbar
spine BMD [12]; rs9594782 is related to hip bone BMD in
men [24]; and rs9594738 and polymorphism are associated
with BMD at lumbar spine in Korean women [25]. In this
study, we did not find significant associations between any of
the individual RANKL SNPs and BMD at the hip bone. It is
possible that most of the participants were in the early post-
menopausal stage in which trabecular bone (the main
component of lumbar spine) loss was more prevalent [26]. The
RANKL gene encodes two different mRNAs and thus two
different proteins of 244 (variant 1) [27] and 317 (variant 2)
[28] amino acids. Variant 2 has 73 more amino acids than
variant 1 at the N-terminus. We found that women without the
RANKL Grs2148072-Crs2200287-Grs922996 haplotype had a higher
risk for low BMD at lumbar spine. Since all three tSNPs of this
haplotype are located in introns, it is unlikely that these tSNPs
affect coding and thus the function of the RANKL protein.
However, it is possible that they are miRNA binding sites and
that these SNPs result in differences in miRNA binding and
hence altered the production of the RANKL protein.

Stratification analyses revealed that participants with the
ESR1 AArs1884054 and RANKL Ars2148072 or Trs2200287 had
lower BMD at lumbar spine (Fig. 2), suggesting that these two
genes together have effects on BMD. One example of this
possibility is that ESR1 may increase the production of RUNX
or OPG to inhibit the activity of RANKL [29]. ESR1 may also
inhibit NF-kB activation, leading to a decrease in the pro-
duction of RANKL and subsequently reduction in bone
resorption [30].

In summary, we found that Taiwanese postmenopausal
women with the ESR1 Crs1884054 allele had a significant
lower BMD at LS2�4/Lat, and those with the ESR1
Trs2234693-Ars922996 haplotype had a higher risk for low
BMD at LS2�4/Lat. Participants without the RANKL
Grs2148072-Crs2200287-Grs922996 haplotype also had a higher risk
for low BMD at LS1�4/AP. We also found that the interaction
between the ESR1 AArs1884054 genotype and the RANKL
Ars2148072 allele or Trs2200287 allele could result in a lower
BMD at SL1�4/AP. These findings may extend our under-
standing on the effect of genetic factors on BMD and establish
a foundation for the development of genotyping ESR1 and
RANKL to predict the osteoporosis risk in menopausal women.
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