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■ REVIEW ARTICLE ■

Introduction

In the first trimester of pregnancy, the term nuchal trans-
lucency (NT) refers to the ultrasound finding of sub-
cutaneous collection of fluid behind the fetal neck
irrespective of whether the collection of fluid is septated
and whether it is confined to the neck or envelopes the
whole fetus [1]. Increased fetal NT thickness refers to
the measurement of the vertical thickness in the mid-
sagittal section of the fetus that is equal to or above
the 95th centile of the reference range [2]. Fetal abnor-
malities are associated with the thickness of fetal NT
rather than the appearance of fetal NT [1,3]. In 1998,
the Fetal Medicine Foundation First Trimester Screen-
ing Group suggested that the optional gestational age
for the measurement of fetal NT is 11–13 gestational
weeks 6 days with the corresponding minimum fetal
crown-rump length (CRL) of 45 mm and the maximum

CRL of 84 mm, and that the 95th centile of NT in-
creased linearly with fetal CRL from 2.1 mm at a CRL
of 45 mm to 2.7 mm at a CRL of 84 mm, whereas the
99th centile did not change with CRL and it was
approximately 3.5 mm [2].

Increased fetal NT thickness is associated with tri-
somy 13, trisomy 18, trisomy 21, Turner syndrome, other
sex chromosome abnormalities, as well as many fetal
anomalies and genetic syndromes [4–8].

Cardinal proposed mechanisms for the increase 
in NT thickness include altered composition of the
extracellular matrix, abnormalities of the heart and
great arteries, and disturbed or delayed lymphatic
development [4,9,10].

Altered Composition of the 
Extracellular Matrix

Brand-Saberi et al [11,12] first observed changes in the
extracellular matrix of the skin in trisomy 21 and trisomy
18 fetuses. In fetuses with trisomies 13, 18 and 21,
there is overexpression of insoluble fibrils as a part of
the framework of connective tissues particularly colla-
gen type IV, laminin and collagen type VI, respectively,
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leading to increase in NT thickness [13,14]. In addi-
tion to single dosage effects of genes on the extrachro-
mosomes 13, 18 or 21, altered extracellular matrix may
also cause an impairment of cell migration leading to
maldevelopment of fetal organs, since many fetal organs
such as heart, aortic arch, face, teeth, thymus and the
enteric nervous system receive cell contributions from
the neural crest [12,15,16].

von Kaisenberg et al [13] found that in the nuchal
skin of human trisomy 13 fetuses, dermal fibroblasts
were collagen type IV positive. The authors suggested
that increased NT thickness in trisomy 13 fetuses is due
to alteration in the composition of collagen type IV,
which is a heterotrimer formed of two α-1 chains and
one α-2 chain. The genes responsible for collagen type
IV α-1 and α-2 chains, COL4A1 (OMIM 120130) and
COL4A2 (OMIM 120090), respectively, are located on
chromosome 13q34, and may be overexpressed in tri-
somy 13 fetuses. Collagen type IV is associated with
laminin, entactin and heparan sulfate proteoglycans to
form the sheet-like basement membranes that separate
epithelium from connective tissue.

von Kaisenberg et al [13] found that in the nuchal
skin of human trisomy 18 fetuses, dermal fibroblasts
were laminin-positive, and the expression level in the
basements was higher than that in normal controls.
The genes responsible for laminin α-1 and α-3 chains,
LAMA1 (OMIM 150320) and LAMA3 (OMIM 600805),
respectively, are located on chromosome 18p11.31
and chromosome 18q11.2, respectively, and may be
overexpressed in trisomy 18 fetuses. Laminin is a 
basement membrane protein composed of three non-
identical chains, A, B1 and B2, arranged in cross-
shaped structure [17].

Various studies have demonstrated a homogeneous
overexpression of genes encoding α-1 and α-2 chains
of collagen type VI and superoxide dismutase (SOD) in
the nuchal skin of trisomy 21 fetuses [13,14,18]. The
genes responsible for collagen type VI α-1 and α-2
chains, COL6A1 (OMIM 120220) and COL6A2 (OMIM
120240), respectively, are located on chromosome
21q22.3, and the gene responsible for SOD, SOD1
(OMIM 147450) is located on chromosome 21q22.1.
Collagen type VI is a component of microfibrillar struc-
tures that localize close to cells, nerves, blood vessels
and large collagen fibrils, and have an anchoring action
[19]. SOD-1 is a major cytoplasmic antioxidant enzyme
that metabolizes superoxide radicals to molecular oxy-
gen and hydrogen peroxide to provide a defense against
oxygen toxicity [20]. Böhlandt et al [21] investigated
the formation of an interstitial edema and found a
large amount of hyaluronan in the skin of fetuses with
trisomy 21. Collagen type VI binds to hyaluronan [22],

and SOD protects against free radical-mediated deg-
radation of hyaluronan. Böhlandt et al [21] suggested
that the increased amount of hyaluronan in the skin of
trisomy 21 fetuses is due to decreased degradation of
hyaluronan. Additionally, high concentrations of hy-
aluronan have been shown to impair the migration of
neural crest cells [23,24], and the persisting atrioven-
tricular canal specific for Down syndrome is caused by
defects in migratory cell populations [25].

In fetuses with Turner syndrome, von Kaisenberg 
et al [26] found that biglycan was underexpressed, and
chondroitin-6-sulfate and chondroitin-4-sulfate pro-
teoglycans were increased. The gene responsible for
biglycan, BGN (OMIM 301870), is located on chromo-
some Xq28 near the second pseudoautosomal region.
Geerkens et al [27] found that in 45,X Turner syn-
drome, the BGN expression level was reduced but in
patients with additional sex chromosomes, the BGN
expression level was increased. The authors suggested
that BGN is subject to X inactivation but is transcribed
like an X-Y homologous gene. BGN is a small proteo-
glycan that may function in connective tissue metabo-
lism by binding to collagen fibrils and TGF-β, and may
promote neuronal survival [28]. BGN is localized in the
cartilage, aorta, and mineral compartment of bones
[26]. Xu et al [28] found that Bgn-deficient mice had
deficiency of a non-collagenous extracellular matrix pro-
tein leading to an osteoporosis-like phenotype in mice.
von Kaisenberg et al [26] suggested that the narrowing
of the aortic isthmus in Turner syndrome is a result of
decreased BGN or a result of abnormal migration of
cells from the neural crest, and that the consequent
increased impedance to flow in the aortic arch leads
to overperfusion of the head and neck and increased
NT thickness. The authors also suggested that in-
creased levels of chondroitin-6-sulfate and chondroitin-
4-sulfate proteoglycans may bind large amounts of
water to form swelling of the skin.

Souka et al [4] reported an association between
increased NT thickness and a wide range of rare ge-
netic syndromes and skeletal dysplasias. To date, there
are at least 30 reports of increased NT thickness as-
sociated with skeletal dysplasias such as achondro-
genesis, osteogenesis imperfecta, hypophosphatasia,
thanatophoric dysplasia, short-rib polydactyly syn-
drome, diastrophic dysplasia, Robinow syndrome,
achondroplasia, Jarcho-Levin syndrome, cleidocranial
dysplasia, campomelic dysplasia, Jeune syndrome, and
ectrodactyly-ectodermal dysplasia-clefting syndrome
[29]. Possible mechanisms for the association between
increased NT thickness and skeletal dysplasias include
a narrow thorax with mediastinal compression, reduced
fetal movements, and alteration of the extracellular
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matrix, especially in skeletal dysplasias with collagen
defects [6,29].

Abnormalities of the Heart and 
Great Arteries

In a study of the heart and great arteries in 60 fetuses
with trisomy 21, 29 with trisomy 18, 17 with trisomy 13
and six with Turner syndrome, all diagnosed by chori-
onic villus sampling (CVS) because of a high risk iden-
tified by a combination of maternal age and fetal NT
thickness at 10–14 gestational weeks, Hyett et al [30]
found that an atrioventricular or ventricular septal
defect for trisomy 21, ventricular septal defects and/or
polyvalvular abnormalities for trisomy 18, atrioventric-
ular or ventricular septal defects, valvular abnormalities
and either narrowing of the isthmus or truncus arterio-
sus for trisomy 13, and severe narrowing of the whole
aortic arch for Turner syndrome as the most common
cardiac lesions. The authors also found that significant
narrowing of the aortic isthmus was noted in trisomies
13, 18 and 21 and Turner syndrome compared with
the normal fetuses, and the degree of narrowing was
significantly greater in fetuses with high NT thickness.
Hyett et al [30] suggested that narrowing of the aortic
isthmus may be the basis of increased NT thickness in
trisomies 13, 18 and 21, and Turner syndrome.

Hyett et al [30,31] suggested that increased NT thick-
ness at 10–14 gestational weeks may act as a screening
marker for major cardiac defects. The prevalence of
congenital heart defects increases with the increase in
NT thickness. Ghi et al [32] found that the prevalence
of major heart defects increased from 2.4% (10 of
416) to 2.6% (8 of 306), 3.1% (12 of 384), 8.3% (13 of
157), 19.0% (8 of 42) and 64.3% (9 of 14), with NT
thickness of 2.5–2.9 mm, 3.0–3.4 mm, 3.5–4.4 mm,
4.5–6.4 mm, 6.5–8.4 mm, and ≥ 8.5 mm, respectively.
In a meta-analysis of an association between increased
NT thickness and major cardiac defects, Hyett [33]
found that the prevalence of major cardiac defects in
fetuses with NT > 2.5 mm (approximately ≥ 95th centile)
was 1.7%. Atzei et al [34] found that the prevalence of
major cardiac defects increased from 0.49% to 0.87%,
1.82%, 3.52%, 6.44% and 12.67%, with NT thickness
of < median, median to < 95th centile, ≥ 95th centile 
to 3.4 mm, 3.5–4.4 mm, 4.5–5.4 mm and ≥ 5.5 mm,
respectively. Makrydimas et al [35] found that NT
thickness ≥ 3.5 mm occurred in 97 of 397 (24.4%) chro-
mosomally normal fetuses and in 14 of 240 (5.8%) of
chromosomally abnormal cases. Simpson et al [36]
suggested that three out of every 100 patients referred
for fetal echocardiography with NT thickness of ≥ 99th

centile will have a major cardiac anomaly. In a meta-
analysis of prenatal screening for serious congenital
heart defects using NT thickness, Wald et al [37] found
that the estimated detection rate was 52% (95% confi-
dence interval, 42–71) for a 5% false-positive rate, and
concluded that prenatal screening congenital heart
defects using NT thickness is likely to be effective.

However, there is lack of evidence of an etiologic
link of structural cardiac defects or cardiac failure to
increased NT thickness [38–40]. Huggon et al [38]
studied the myocardial performance index and atrioven-
tricular valve ratios of the peak early diastolic velocity
(E wave) to peak late diastolic velocity (A wave) for
both sides of the heart by Doppler echocardiography
in 159 normal control fetuses, 199 otherwise normal
fetuses but with increased NT ≥ 4 mm, 142 fetuses with
trisomy 21, 58 fetuses with trisomy 18, 19 fetuses with
trisomy 13, 37 fetuses with Turner syndrome, and 24
fetuses with isolated heart defects at 11–14 gestational
weeks. They found no evidence to support a hypothe-
sis for cardiac dysfunction in the genesis of increased
NT thickness. Haak et al [40] additionally found no
difference in intracardiac flow velocities between fetuses
with normal and those with increased NT thickness, and
hypothesized that a coexisting developmental process,
linking both enlargement of the NT as well as cardio-
vascular malformations might be the common patho-
physiologic pathway.

Disturbed or Delayed Lymphatic
Development

van der Putte [41] found marked malformations of the
lymphatic system in seven spontaneously aborted fe-
tuses with assumed Turner syndrome, and suggested
that this pathologic process is essentially a generalized
hypoplasia and partial agenesis of the lymphatic sys-
tem, which ceases to extend peripherally at an early
embryonic stage. Byrne et al [42] observed large cystic
hygromas, generalized edema and edematous chorionic
villi in fetuses with 45,X or monosomy X, and suggested
impaired lymphatic drainage of the jugular lymphatic
sacs in Turner syndrome. In a study of lymphatic abnor-
malities in fetuses with cystic hygroma, Chitayat et al
[43] found that in the non-45,X fetuses (two with
47,XX, +21, one with 47,XX, +13, four with 46,XY and
one with lethal multiple pterygium syndrome), the lym-
phatic vessels were dilated and increased in number;
while in the 45,X fetuses, the lymphatic vessels were
hypoplastic. von Kaisenberg et al [44] investigated the
distribution of lymphatic vessels in nuchal skin tissue
from fetuses with Turner syndrome compared with
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fetuses carrying trisomies 21, 18 and 13 and chromoso-
mally normal controls by immunohistochemistry. They
found that in Turner syndrome, there was lymphatic
hypoplasia, which was completely different from fetuses
with trisomies who had evenly distributed lymphatic
vessels throughout the dermis and subdermis.

On studying the pathomorphology of the nuchal
region in normal and trisomy 16 mouse embryos and
in human fetuses with increased NT thickness, and the
ultrasonography of the nuchal region in normal and
abnormal human fetuses, Haak et al [45] found a
mesenchyme-lined cavity within the posterior nuchal
region, bilaterally enlarged jugular LYVE-1 positive lym-
phatic sacs, and the persistence of jugular lymphatic
sacs by ultrasound in 14 human fetuses with increased
NT thickness. The authors concluded that mesenchy-
mal edema in the presence of distended jugular lym-
phatic sacs is the cause of increased NT thickness, and
the delayed organization and connection of these lym-
phatic sacs to the venous circulation can explain the
transient nature of NT thickness. Haak et al [45] sug-
gested that disturbance in timing of endothelial differ-
entiation is a common denominator in the origin of
NT thickness such a disturbance links cardiovascular
abnormalities and hemodynamic abnormalities in the
pathogenesis of increased NT thickness. Castelli et al
[46] hypothesized that the echo-free image of NT is
likely the superficial recesses of the jugular lymphatic
sacs placed in the nuchal soft tissues by their light and
scanning electron microscopes study of NT in a normal
fetus. The hypothesis that an increased NT is caused by
abnormal jugular lymphatic development was further
tested by using the trisomy 16 mouse model [47].
Gittenberger-de Groot et al [47] concluded that
abnormal jugular lymphatic sacs are associated with
the development of nuchal edema (NE), and a distur-
bance of lymphangiogenesis is the basis for increased
NT thickness.

Bekker et al [48] found a significant difference in the
prevalence of jugular lymphatic sacs between fetuses
with enlarged NT and the normal controls, and a signifi-
cant association between increased NT and distended
jugular sacs on first-trimester ultrasound, and suggested
a disturbance in lymphangiogenesis as the pathophysi-
ology of increased NT thickness. Bekker et al [49] further
observed a disturbed venous-lymphatic phenotype in an-
euploid human fetuses and mouse embryos with en-
larged jugular sacs and NE with the associated findings
of absent or diminished expression of the lymphatic
markers in the enlarged jugular sacs, as well as abnor-
mal endothelial differentiation, which provides a link
to the cardiovascular anomalies associated with NE.
An impaired neural migration signaling, in addition to

abnormal endothelial development, causes abnormal
migration of neural crest cells leading to aortic arch
anomalies and cardiovascular anomalies [50–54].
Bekker et al [49] suggested that a disturbed venous-lym-
phatic differentiation is the common process leading
to increased NT thickness regardless of karyotype.
Bekker et al [49] additionally found that distended jugu-
lar lymphatic sacs were visible in 91.9% of fetuses with
increased NT in which NT expression preceded jugular
lymphatic sac enlargement, and that aneuploid fetuses
had a more disturbed lymphangiogenesis.

Bekker et al [49] demonstrated diminished expres-
sion of lymphatic marker Prox-1 and podoplanin, 
and the presence of blood vessel characteristics such
as vascular endothelial growth factor (VEGF)-A and 
neuropilin-1 in the lymphatic endothelial cells of the
enlarged jugular lymphatic sacs with NE. They also
found aberrant smooth muscle cells surrounding the
enlarged jugular lymphatic sac with NE. de Mooij et al
[55] additionally demonstrated an increased expres-
sion of Sonic hedgehog (Shh), VEGF-A and platelet-
derived growth factor (PDGF)-B, and a decreased
expression of forkhead transcription factor FOXC2 in
the lymphatic endothelial cells of the jugular lymphatic
sacs of the trisomic fetuses. The authors hypothesized
that increased Shh and VEGF-A expression in human
trisomic fetuses with enlarged jugular sacs and NE is
correlated with an aberrant lymphatic differentiation,
and increased PDGF-B expression induces smooth mus-
cle cells recruitment and/or differentiation. Mutations in
FOXC2 are responsible for the hereditary lymphedema-
distichiasis syndrome [56]. FOXC2 normally suppresses
the expression of PDGF-B in the lymphatic endothelial
cells and inhibits smooth muscle cells attraction and
proliferation [55,57,58]. de Mooij et al [55] suggested
that increased fetal NT thickness in trisomic fetuses
may be due to a loss of lymphatic identity and a shift
towards a blood vessel wall phenotype.
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