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Introduction

Neural tube defects (NTDs) have an incidence of 1–2
per 1,000 births and are considered to be a heteroge-
neous condition resulting from failure of normal neu-
ral tube closure between the third and fourth week of
embryonic development. The three common types of
NTDs are anencephaly, spina bifida, and encephalo-
cele. The uncommon types of NTDs include amniotic
band syndrome, limb–body wall complex, cloacal exstro-
phy or omphalocele-exstrophy-imperforate anus-spinal
defects (OEIS) complex and other types of spinal abnor-
malities. The incidence of NTDs varies with race, geo-
graphic variation, socioeconomic classes, nutritional

status, and multiple predisposing factors such as single
gene disorders, chromosomal abnormalities, teratogens,
maternal diabetes, family history of NTDs, and poly-
morphisms in the genes of folate metabolism. There is
considerable evidence that genetics and environmental
factors contribute to the etiology of NTDs. Fetuses with
NTDs may be associated with maternal and fetal risk
factors.

Infertility, Periconceptional Clomiphene
Use, and Assisted Reproductive Technology

Wu et al [1] suggested that infertility may be associ-
ated with an increased risk of spinal NTDs. In a nested
case-control study within the Kaiser Permanente Medical
Care Program in Northern California, Wu et al [1] iden-
tified 18 cases with spinal NTDs among a birth cohort
of 110,624 singleton infants and randomly selected
1,608 cases for controls. They found that case mothers
were more likely to have a history of infertility (4/18 vs.
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96/1,608; odds ratio, OR, 4.3; 95% confidence inter-
val, CI, 1.01–14.0) and to have had periconceptional
clomiphene use (3/18 vs. 32/1,608; OR, 11.7; 95% CI,
2.0–44.8). Bánhidy et al [2] found possible interac-
tions among clomiphene treatment, follicular cysts and
NTDs. They found an association between the pres-
ence of maternal follicular cysts and a higher risk of
NTDs in the offspring (7/1,202 vs. 88/38,151; crude
OR, 3.2; 95% CI, 1.0–10.4), but this association was
lost when clomiphene treatment was included among
confounders (adjusted OR, 1.7; 95% CI, 0.4–6.9). They
also found an association between clomiphene treat-
ment in early pregnancy and a higher risk of NTDs 
(7/1,202 vs. 96/38,151; crude OR, 6.4; 95% CI, 1.3–
31.4), but this association was diminished if follicular
cysts were included among confounders (adjusted
OR, 4.5; 95% CI, 0.7–26.7). The possible association
between periconceptional clomiphene use and NTDs is
controversial. A positive but mild or indirect association
between clomiphene and NTDs has been observed in
several reports [1–9]. However, the studies of Mills 
et al [10], Van Loon et al [11], Greenland and Ackerman
[12] and Källén et al [13] have shown that clomiphene
may not elevate the risk of NTDs in the offspring of the
women using this drug. In a pooled analysis of 10 epi-
demiological studies, Greenland and Ackerman [12]
found that the estimated summary prevalence ratio
for the association between NTDs and clomiphene
was 1.08, with 95% confidence limits of 0.76 and 1.51.
Källén et al [13] studied the outcome after ovarian
stimulation without in vitro fertilization (IVF) and found
that none of the 4,029 infants studied had spina bifida.
The possibility that assisted reproductive technology is
associated with an increase in major birth defects can-
not be excluded based on the current evidence [14–17].
Källén et al [16] studied 16,280 IVF infants born during
the period 1982–2001 in Sweden and found that 8%
had a congenital malformation, 5% had a relatively
severe condition, and an additional risk increase was
seen in NTDs, choanal atresia and alimentary tract
atresia. In their study, the ORs with 95% CIs for anen-
cephaly, spina bifida and any NTDs were: OR of 7.6,
95% CI of 2.5–7.7; OR of 5.1, 95% CI of 3.4–7.8; and
OR of 4.8, 95% CI of 3.3–6.9, respectively.

Periconceptional Folic Acid Deficiency, and
Effects of Folic Acid Supplementation and
Fortification on NTD Rates

About 70% of NTDs in humans are folate-sensitive or
folate-dependent and can be prevented by periconcep-
tional folic acid supplementation [18–21]. In the 1960s,

Hibbard [22] and Hibbard and Smithells [23] proposed
the association between folic acid metabolism and
human embryopathy. In the 1980s, Smithells et al [24]
suggested the possibility of NTD prevention by pericon-
ceptional vitamin supplementation, and Laurence et al
[25], Mulinare et al [26], Bower et al [27] and Mulinsky
et al [28] published their results of the prevention of
NTD recurrence with periconceptional folate treat-
ment, folic acid-containing multivitamin supplements
or dietary folate. In the 1990s, the Medical Research
Council (MRC) Vitamin Study Group [18], in a ran-
domized double-blind prevention trial with a factorial
design conducted at 33 centers in seven countries,
found that folic acid supplementation of 4 mg/day
can prevent NTDs. The relative risk (RR) estimate for
the women who were at high risk of having a preg-
nancy with an NTD because of a previous affected
pregnancy and were allocated to take folic acid was
0.28, indicating a 72% protective effect (RR, 0.28; 95%
CI, 0.12–0.71). Czeizel and Dudás [19] concluded
that periconceptional folic acid and vitamin use can
decrease the incidence of a first occurrence of NTDs.
The results of the MRC Vitamin Study Group [18] and
Czeizel and Dudás [19] fueled public efforts to reduce
the prevalence of NTDs through educational and food
fortification programs. Following the report of the
MRC Vitamin Study Group [18], the Centers for
Disease Control and Prevention [29] recommended
that women who have had an earlier pregnancy affected
by an NTD should consume 4,000 µg/day or 4 mg/day
of folic acid from the time of trying to become preg-
nant to the first trimester of pregnancy. In 1992, the
US Public Health Service recommended that all women
of childbearing age should consume at least 400 µg/
day of folic acid [30]. In 1998, the US Food and Drug
Administration [31] mandated that folic acid be
added to all enriched cereal-grain products at a level
of 140 µg/100 g of flour. Werler et al [32] and Shaw
et al [33] observed a reduced risk of NTDs among
women who had dietary intakes of folate during early
pregnancy. Berry et al [34] reported that periconcep-
tional intake of 400 µg of folic acid daily reduced the
risk of NTDs in areas of China with high or low NTD
rates. The universal protective effect of maternal peri-
conceptional folic acid supplementation is evident by
the declining population prevalence of NTDs by 30–50%
following folic acid food fortification in many countries
[35–45]. The American College of Medical Genetics [46]
recommended that:
1. Women capable of becoming pregnant should

take 400 µg (0.4 mg) of folic acid daily, in the form
of supplement, multivitamin, and/or through forti-
fied foods, in addition to eating a healthy diet. This
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is particularly important before conception and
through the first trimester of pregnancy.

2. Women who have had a prior NTD-affected preg-
nancy, have a first-degree relative with an NTD or
are themselves affected should be advised to take
4,000 µg (4 mg) of folic acid daily starting at least
1 month and preferable 3 months before conception.

3. The total daily intake of folic acid should not exceed
1,000 µg (1 mg) unless prescribed by a physician,
because of a potential concern of masking timely
detection of vitamin B12 deficiency.

Bayston et al [47] concluded that there is no evidence of
folic acid fortification on the risk of colorectal cancer.
Johnston [48] concluded that there is no known evi-
dence that the recommended folic acid supplementa-
tion and fortification have caused harm in individuals.
However, several reports suggested that all potentially
adverse effects caused by a high intake of folic acid from
fortified food or dietary supplements should be moni-
tored [49–53]. The possible harms of elevated blood
folate concentrations include: (1) influence of DNA
and histone methylation; (2) masking of vitamin B12
deficiency; (3) elevated blood concentration of natu-
rally occurring folates and of unmetabolized folic acid;
(4) decreased natural killer cell activity; (5) interference
with antifolate treatment such as reducing the response
to antifolate drugs for malaria, rheumatoid arthritis,
psoriasis and cancer; (6) cancer promotion by facili-
tating progression and growth of preneoplastic cells
and subclinical cancers; (7) an increased risk of cogni-
tive impairment and anemia in the elderly with a com-
bination of high folate levels and low vitamin B12
status; and (8) an increased risk of insulin resistance
and obesity in the offspring of the pregnant women with
a combination of high folate levels and low vitamin
B12 status [53].

Periconceptional Vitamin B12 
Deficiency

Low maternal serum levels of vitamin B12 have been
associated with a higher risk of NTDs [54–62]. Gaber
et al [62] and Ray et al [63] found that low vitamin
B12 concentration can be associated with an approxi-
mately two- to threefold increased risk of NTDs. Ray 
et al [64] found that about 1 in 20 women may be defi-
cient in vitamin B12 in early pregnancy. Ray et al [63]
found that as much as 34% of all NTDs in Canada may
be attributable to low maternal vitamin B12 status. Ray
et al [64] suggested that adding vitamin B12 to folic
acid-fortified foods may help prevent NTDs as well as
reduce concern about masking vitamin B12 deficiency

and vitamin B12-related neurologic diseases occurring
with folic acid food fortification.

Single Nucleotide Polymorphisms (SNPs)
and Polymorphisms in Genes of Folate
Metabolism

Beaudin and Stover [65] suggested that SNPs in genes
of folate-mediated one-carbon metabolism can: (1)
influence both maternal and fetal folate status affect-
ing neural tube closure; (2) directly disrupt metabolism
resulting in homocysteine accumulation, impaired nu-
cleotide biosynthesis and impaired cellular methylation;
and (3) modify genomic and/or cellular responses critical
to proper neural tube closure, including cell prolifera-
tion, survival, differentiation and migration. Reported
SNPs and polymorphisms in genes of folate metabo-
lism associated with NTDs include specific SNPs in
genes within folate transport, SNPs in genes within the
methionine/homocysteine metabolic cycle, and SNPs
and polymorphisms in genes contributing to nucleotide
biosynthesis. Several authors have provided a detailed
review on the genetic basis of NTDs [65–73].

SNPs in genes within folate transport
Folic acid is absorbed in the proximal small intestine
through a carrier-mediated mechanism involving reduced
folate carrier (RFC). After entering into the blood stream,
folate is transported into the cells through folate recep-
tors (FRs), FR-α, FR-β and FR-γ, and through RFC. There
is lack of association between mutations in FR-a and
FR-b and NTDs [74–76]. Rothenberg et al [77] found
autoantibodies against FRs in 75% of women with a preg-
nancy complicated by NTDs but in only 10% of women
with a normal pregnancy. The binding of maternal auto-
antibodies to the FRs on the placental membrane may
block the binding of folic acid.

RFC-1 A80G SNP
A polymorphism of A80G in the RFC gene is associated
with lower plasma folate status and homocystinemia
[78]. The RFC-1 A80G SNP in the RFC gene has been
demonstrated as a genetic risk factor for NTDs, espe-
cially under the circumstance of low folate status and
mutations in the methylenetetrahydrofolate reductase
(MTHFR) gene [79–82].

SNPs in genes within the methionine/homocysteine
metabolic cycle
MTHFR C677T SNP
An MTHFR C677T SNP is associated with a reduction
of MTHFR enzymatic activity and elevated levels of

Taiwan J Obstet Gynecol • June 2008 • Vol 47 • No 2 143

Syndromes, Disorders and Maternal Risk Factors with NTDs



plasma homocysteine. The MTHFR C677T SNP in the
MTHFR gene has been demonstrated as a genetic risk
factor for NTDs [68,83–93]. In a meta-analysis, Blom
et al [68] concluded that there is a moderately elevated
risk for NTDs in maternal and fetal MTHFR 677TT ho-
mozygous genotypes (60% increase; OR, 1.6; and 90%
increase; OR, 1.9, respectively), and a mildly elevated
risk for NTDs in maternal and fetal MTHFR 677CT het-
erozygous genotypes (10% increase; OR, 1.1; and 30%
increase; OR, 1.3, respectively).

Methylation hypothesis
The MTHFR 677TT genotype produces the lowest
MTHFR activity, higher concentrations of 5,10-meth-
ylenetetrahydrofolate (5,10-methylene THF) and 10-
formyltetrahydrofolate (10-formyl THF), increased DNA
synthesis, lower concentrations of 5-methyltetrahydro-
folate (5-methyl THF), and consequently decreased
methylation which may be more pronounced under
the condition of low folate status [68]. The MTHFR
677CC genotype produces the highest MTHFR activ-
ity, lower concentrations of 5,10-methylene THF and
10-formyl THF, decreased DNA synthesis, higher con-
centrations of 5-methyl THF, and consequently increased
methylation [68]. The MTHFR 677CT genotype produces
an intermediate effect on DNA synthesis and methyla-
tion [68]. Blom et al [68] suggested the methylation
hypothesis in that the MTHFR C677T SNP results in an
increased NTD risk through disruption of the methy-
lation of lipids, DNA and protein during early embryo-
genesis, and that folate prevents NTDs by increasing
methylation of various molecules that are essential to
cellular processes.

MTHFR A1298C SNP
An MTHFR A1298C SNP is associated with a reduction
of MTHFR enzymatic activity but has no effect on ho-
mocysteine plasma levels [94–97]. Combined SNPs of
MTHFR C677T and MTHFR A1298C have been dem-
onstrated to be associated with an increased risk for
NTDs [89,94,98,99]. De Marco et al [100] reported
that MTHFR A1298C SNP was a genetic determinant
of NTD risk in Italy. To date, only the study reported
by De Marco et al [100] found an association between
MTHFR A1298C SNP and NTDs. The evidence regard-
ing the effect of MTHFR A1298C SNP on NTDs is lim-
ited. van der Linden et al [71] concluded that MTHFR
A1298C SNP is unlikely to be a risk factor for NTDs.

MTR A2756G SNP
Methionine synthase (MTR) converts folate and homo-
cysteine to tetrahydrofolate and methionine. The asso-
ciation between MTR A2756G SNP and NTDs is

inconclusive. Concerning MTR A2756G SNP in relation
to NTDs, some studies found an increased NTD risk
[101–104], other studies found no association [100,
105–108], and one study found a decreased NTD risk
[87]. van der Linden et al [71] concluded that if there
is a relationship between the MTR A2756G SNP and an
NTD risk, it is at most a rather moderate association.

MTRR A66G SNP
The enzyme methionine synthase reductase (MTRR)
activates MTR. The role of MTRR variants in NTDs has
yet to be established. Concerning the MTRR A66G SNP 
in relation to NTDs, some studies found an increased
NTD risk [57,71,103,109], whereas other studies found
no association [104,108,110]. In a meta-analysis of eight
relevant studies on the MTRR A66G SNP and maternal
NTD risk, van der Linden et al [71] found that the MTRR
A66G SNP genotype in mothers was associated with
an overall 48% increase in NTD risk (OR, 1.48; 95% CI,
1.00–2.19) and concluded that the MTRR A66G SNP
genotype seems to be an NTD risk factor.

BHMT rs3733890 SNP
Betaine-homocysteine methyltransferase (BHMT) re-
methylates homocysteine to methionine with a betaine
cofactor. Boyles et al [111] found that the BHMT
rs3733890 SNP was significantly associated with NTDs,
particularly when mothers were receiving preconcep-
tional folate or parents preferentially transmitted the
MTHFR rs1801133 T allele. Boyles et al [111] hypoth-
esized that: (1) the BHMT polymorphism could create a
highly efficient variant that causes the metabolic cycles
to overfunction when combined with high folate levels;
(2) a gene–gene interaction between BHMT and MTHFR
could require polymorphisms in both genes for NTDs;
or (3) additional correlated factors are involved and
undetectable in their study samples.

SNPs and polymorphisms in genes contributing to
nucleotide biosynthesis
MTHFD1 G1958A SNP
The trifunctional enzyme, C1 synthetase or MTHFD1
(methylenetetrahydrofolate dehydrogenase [MTHFD]/
methenyltetrahydrofolate cyclohydrolase/formyltetrahy-
drofolate synthetase), is a trifunctional nicotinamide
adenine dinucleotide phosphate-dependent cytoplas-
mic enzyme that has three enzymatic properties: (1)
10-formyl THF synthetase that reversibly converts THF
to 10-formyl THF, (2) methyl THF cyclohydrolase that
reversibly converts 10-formyl THF to 5,10-methenyl
THF, and (3) MTHFD that reversibly converts 5,10-
methenyl THF to 5,10-methylene THF [112]. 10-formyl
THF and 5,10-methylene THF are the donor cofactors
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for de novo purine and pyrimidine biosynthesis, respec-
tively. MTHFD1 G1958A SNP results in the substitution
of an arginine (R) by a glutamine (Q), or R653Q, within
the 10-formyl THF synthetase domain of the MTHFD1
enzyme. Hol et al [113] found that the MTHFD1 G1958A
SNP had a similar frequency among the NTD patients
and normal individuals and did not influence the plasma
homocysteine level. Brody et al [114] found an associa-
tion of QQ homozygosity in MTHFD1 G1958A (R653Q)
SNP with mothers of children with NTD in a study of
Irish population. They also found that the plasma folate,
red blood cell folate and homocysteine levels in 653QQ
mothers were not altered. Brody et al [114] predicted
that mothers with the QQ homozygosity in MTHFD1
G1958A (R653Q) SNP have a 1.5- to 2-fold risk of
having an NTD-affected pregnancy compared with the
controls. Brody et al [114] found QQ homozygosity to
be overrepresented in mothers of children with NTD
and underrepresented in children with NTD; they con-
cluded that genetic variation in the MTHFD1 gene is
associated with an increase in the genetically determined
risk that a woman will bear a child with NTD and that
the gene may be associated with decreased embryo
survival. Parle-McDermott et al [115] confirmed that
the R653Q polymorphism of trifunctional MTHFD1
enzyme is associated with maternal risk for NTDs in
the Irish population. De Marco et al [116] identified
MTHFD1 1958GA and MTHFD1 1958AA genotypes in
NTD patients from an Italian population and suggested
that MTHFD1 1958GA SNP is a risk factor for NTDs.
In the absence of effects on folate and homocysteine
levels, the MTHFD1 G1958A SNP may affect the neural
tube closure via alterations in a folate-dependent ana-
bolic pathway other than the methylation mechanism,
or via alterations in the nucleotide pools available for
DNA synthesis [65].

cSHMT C1420T SNP
Serine hydroxymethyltransferase (SHMT) is associated
with thymidylate biosynthesis. SHMT catalyzes the re-
versible conversion of serine and THF to glycine and
5,10-methylene THF. Heil et al [117] found that the cy-
tosolic isoform of the SHMT gene polymorphism cSHMT
C1420T SNP was not associated with an NTD risk in
mothers of patients and that the mothers with cSHMT
1420CC genotype had significantly elevated plasma
homocysteine levels and decreased erythrocyte and
plasma folate levels. Relton et al [99] demonstrated a
protective effect associated with the T allele in mothers
of patients. van der Linden et al [71] concluded that the
cSHMT C1420T SNP is at most a minor risk factor for
NTD risk. However, the efficiency of nuclear folate me-
tabolism is likely to be modified by the cSHMT C1420T

polymorphism. Woeller et al [118] found that cSHMT
C1420T SNP impaired the UBC9-cSHMT interaction and
inhibited cSHMT small ubiquitin-like modifier (SUMO)-
ylation in vitro resulting in cSHMT accumulation in the
cytoplasm and impairment of homocysteine remethy-
lation pathway and folate-dependent de novo thymidy-
late biosynthesis pathway in the nucleus. A synergistic
gene–gene interaction between cSHMT C1420T SNP
and MTHFR C677T SNP has been observed in an epi-
demiologic study of cardiovascular disease risk [119].
Lim et al [119] found the increased risk of cardiovas-
cular disease associated with MTHFR 677CT and MTHFR
677TT genotypes was of greater magnitude among men
with the cSHMT 1420TT genotype.

TS 28-bp thymidylate synthase enhancer region (TSER) and
TS 6-bp deletion in the 3� untranslated region (UTR)
Thymidylate synthase (TS) catalyzes the conversion of
deoxyuridylate to thymidylate and is associated with
thymidylate biosynthesis. TS contains a 28-bp tandem
repeat in the TS promoter enhancer region (TSER) in
the 5� UTR. The tandem repeat polymorphism affects
the expression of the enzyme. The three repeats (3R) 
in the 5� UTR confers higher translation efficiency than
the two repeats (2R) in the 5� UTR in vitro [120]. TS
mRNA with a 3R sequence has higher translation effi-
ciency than that with the 2R sequence in vivo [121,122].
Trinh et al [123] observed that the TSER 3R3R geno-
type was associated with reduced plasma folate and
elevated plasma homocysteine levels among the Chinese
population of Singapore with low dietary folate intake.
Wilding et al [124] found that TS repeat polymor-
phism in TSER was not associated with an NTD risk 
in the northern United Kingdom population. However,
Brown et al [125] observed that the TS tandem repeat
polymorphism was not associated with homocysteine
concentrations in the northwestern European popula-
tion and that the TSER 3R3R genotype was not a deter-
minant of homocysteine. The 6-bp deletion in the 3�

UTR of TS affects RNA stability and translation [126].
Volcik et al [127] found that the NTD risk increased by
fourfold with the TSER 2R2R genotype, by threefold with
the undeleted homozygous genotype of 3� UTR++ and
by more than fourfold with the combined TSER 2R2R
and 3� UTR++ genotypes in non-Hispanic whites but
not in Hispanic whites, African-Americans or Asian-
Americans.

DHFR intron-1 19-bp deletion
Dihydrofolate reductase (DHFR) plays a role in regen-
erating THF from dihydrofolate during folate-linked
synthesis of thymidine. Johnson et al [128] suggested
that maternal homozygosity for the 19-bp deletion 
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allele polymorphism in intron 1 of the DHFR gene is a
risk factor for spina bifida. However, van der Linden 
et al [129] did not find an association between DHFR
intron-1 19-bp deletion and NTDs. On the contrary,
Parle-McDermott et al [130] demonstrated that the
DHFR intron-1 19-bp deletion may be a protective NTD
genetic factor by increasing DHFR mRNA levels in preg-
nant women. Stanisl/awska-Sachadyn et al [131] con-
firmed the findings of Parle-McDermott et al [130] and
suggested that the DHFR deletion/deletion homozygotes
have increased serum and red blood cell folate con-
centrations and may therefore be at decreased risk of
having NTD offspring.

Maternal Autoantibodies to Folate
Receptors

Folic acid is absorbed in the proximal small intestine
through a carrier-mediated mechanism involving RFC.
After entering into the blood stream, folate is trans-
ported into the cells through folate receptors (FRs),
FR-α, FR-β and FR-γ, and through RFC. Rothenberg 
et al [77] found autoantibodies against FRs in 75% of
women with a pregnancy complicated by NTDs but 
in only 10% of women with a normal pregnancy. The
binding of maternal autoantibodies to the FRs on the
placental membrane may block the binding of folic
acid. The occurrence of the autoantibodies may explain
the beneficial effect of periconceptional folate supple-
mentation. The 75% of the index subjects is similar to
the 70% decrease in NTDs by periconceptional folic
acid supplementation. Folic acid has a high affinity for
the FRs. Folic acid can displace an autoantibody with
a low affinity for the FRs. This study suggests that
autoantibody-mediated blocking of cellular folate uptake
by the FRs can be bypassed by folic acid.

Conclusion

This article provides a comprehensive review of mater-
nal and fetal risk factors associated with NTDs, such as
infertility, periconceptional clomiphene use and assisted
reproductive technology, periconceptional folic acid
deficiency, and effects of folic acid supplementation
and fortification on rates of NTDs, periconceptional
vitamin B12 deficiency, SNPs and polymorphisms in
genes of folate metabolism, and maternal autoantibod-
ies to folate receptors. NTDs associated with maternal
and fetal risk factors are an important cause of NTD.
Perinatal identification of NTDs should alert the clini-
cian to the maternal and fetal risk factors associated

with NTDs, and prompt a thorough etiologic investi-
gation and genetic counseling.
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