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Introduction

Beckwith–Wiedemann syndrome (BWS; OMIM 130650)
is characterized by macrosomia, macroglossia, vis-
ceromegaly, hemihypertrophy, abdominal wall defects,
ear creases/pits, neonatal hypoglycemia, adrenocorti-
cal cytomegaly, dysplasia of the renal medulla, and an
increased frequency of adrenal carcinoma, nephroblas-
toma, hepatoblastoma and rhabdomyosarcoma. Other
associated abnormalities include polyhydramnios, pla-
centomegaly, placental mesenchymal dysplasia, cardio-
megaly, structural cardiac anomalies, nevus flammeus,
hemangiomata, advanced bone age, and midfacial 
hypoplasia. BWS is the most common overgrowth 
syndrome. Elliott et al reported the following in 74 pedi-
atric patients with BWS: macroglossia (97%); pre- or

postnatal gigantism (88%); abdominal wall defects
such as omphalocele, umbilical hernia or diastasis
recti (80%); ear creases or posterior helical ear pits
(76%); hypoglycemia (63%); facial nevus flammeus
(62%); renal anomalies such as nephromegaly, multi-
ple calyceal cysts or hydronephrosis (59%); hemihyper-
trophy (24%); congenital cardiac malformations
(6.5%); intestinal malrotation (5%); neoplasia (4%);
moderate/severe mental retardation (4%); polydactyly
(3%); and cleft palate (2.5%) [1]. The mode of inheri-
tance is complex and the patterns include autosomal
dominance with variable expressivity, contiguous gene
duplication at 11p15, genomic imprinting resulting from
a defective or absent copy of the maternally derived
gene at 11p15, and mutations of the gene in the region
of chromosomes 11p15 and 5q35.

Genetics of BWS

Genes associated with BWS at the chromosome 
region of 11p15 are organized into two distinct
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domains: domain 1 and domain 2. Domains 1 and 2
are respectively controlled by two imprinting centers of
parent-of-origin-specific differentially methylated regions
(DMRs), DMR1 and DMR2 [2,3]. Domain 1, which is
located at the distal end of 11p15, contains the im-
printed genes of insulin-like growth factor II (IGF2) and
H19, and the imprinting center DMR1 (or imprinting
center 1, IC1). Domain 2, which is centromeric to
domain 1, contains several imprinted genes including
CDKN1C (also known as cyclin-dependent kinase inhib-
itor 1C), KCNQ1 (also known as KvLQT1 or potassium
channel, voltage-gated, KQT-like subfamily member 1),
KCNQ1OT1 (also known as LIT1, KCNQ1-overlapping
transcript 1 or long QT intronic transcript 1), PHLDA2,
SLC22A18, and the imprinting center DMR2 (or im-
printing center 2, IC2). PHLDA2 and SLC22A18 are not
directly implicated in BWS [3].

Domain 1
(1) IGF2
IGF2 (OMIM 147470) encodes insulin-growth factor
II, which is an embryonic growth factor and a regulator
of cell proliferation. The functions of this gene include
mediation of growth hormone action, stimulation of
growth of cultured cells, stimulation of the action of
insulin, and involvement in development and growth.
IGF2 is a paternally expressed and maternally imprinted
gene. Disruption of IGF2 imprinting, and paternal
duplication of 11p15 or paternal uniparental disomy
11 (UPD11) will cause increased expression of IGF2
and BWS.

(2) H19
H19 (OMIM 103280) encodes a biologically active,
nontranslated mRNA that may function as a tumor
suppressor [4]. H19 is a maternally expressed and pater-
nally imprinted gene. The maternal H19 promoter is
unmethylated, and the paternal H19 promoter is methy-
lated. Gain of methylation at maternal H19 promoter
will cause loss of H19 expression and expression of
biallelic IGF2 and BWS.

(3) DMR1
DMR1 is located several kilobases upstream of H19
and is an imprinting center. The activity of DMR1 is
dependent on the vertebrate enhancer-blocking pro-
tein, CTCF (OMIM 604167) [5]. The CTCF-dependent
enhancer-blocking element acts as an insulator.
Normally, the maternal DMR1 is unmethylated, per-
mitting the binding of CTCF to DMR1, thereby block-
ing the access of the IGF2 promoter to the downstream
enhancer. On the other hand, the paternal DMR1 and
H19 promoter are methylated, thus silencing the H19

promoter and preventing the binding of CTCF to
DMR1.

Domain 2
(1) KCNQ1
KCNQ1 (OMIM 607542) encodes a protein with struc-
tural features of a voltage-gated potassium channel.
Mutations of KCNQ1 are associated with long QT syn-
drome. KCNQ1 is maternally expressed in most tissues
except the heart [6].

(2) DMR2
DMR2 (also known as KvDMR1 or KvLQT1 DMR) is
located within intron 10 of KCNQ1 and is an imprinting
center. Smilinich et al identified DMR2 in the maternally
methylated CpG island within intron 10 of KCNQ1 and
proposed that hypomethylation at maternal DMR2 rep-
resents a distinct epigenetic anomaly associated with
biallelic expression of IGF2 and BWS [7]. Normally, the
paternal DMR2 is unmethylated, allowing the expres-
sion of KCNQ1OT1 and silencing of CDKN1C; the mater-
nal DMR2 is methylated, thus causing KCNQ1OT1 to be
silenced and CDKN1C to be expressed. Loss of meth-
ylation at maternal DMR2 occurs in 50% of BWS cases
[2,7–10].

(3) KCNQ1OT1
KCNQ1OT1 (OMIM 604115) is a noncoding RNA with
antisense transcription to KCNQ1. The 5’ end of the
transcript overlaps with DMR2. KCNQ1OT1 is normally
expressed from the paternal allele and methylated on
the maternal allele.

(4) CDKN1C
CDKN1C (OMIM 600856) encodes the p57(KIP2)
protein which is a potent tight-binding inhibitor 
of several G1 cyclin/cyclin-dependent kinase com-
plexes and a negative regulator of cell proliferation
[11]. CDKN1C is a tumor suppressor gene and a neg-
ative regulator of fetal growth. This gene is mater-
nally expressed and is regulated by DMR2. Loss of
methylation at maternal DMR2 is associated with
decreased expression of CDKN1C [3]. Mutations in
CDKN1C are associated with 40% of familial BWS
[12–14].

NSD1
Mutations in NSD1 are associated with Sotos syndrome
(OMIM 117550), an overgrowth syndrome. There is
clinical overlap between BWS and Sotos syndrome.
Baujat et al detected two NSD1 mutations in a series
of 52 patients with BWS and two 11p15 anomalies in
a series of 20 patients with Sotos syndrome [15].
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Baujat et al suggested that NSD1 may be involved in
imprinting of the 11p15 region [15].

Genetic Diagnosis of BWS

Analysis of frequency of genetic abnormalities in patients
with BWS found: loss of methylation at maternal DMR2
in 50%; paternal UPD11 in 20%; mutations in CDKN1C
in 10%; gain of methylation at maternal DMR1 in 2–7%;
11p15 chromosome translocation/inversion or dupli-
cation in < 1%; and unknown etiology in 13–15% of the
cases [3]. Genetic investigation of BWS includes cytoge-
netic analysis of chromosome 11p15 duplication, inver-
sion or translocation; and molecular analysis of UPD11,
loss of methylation at DMR2, gain of methylation at
DMR1 or H19, and mutations in CDKN1C. Array-based
SNP genotyping has been proven to be a fast, cost-
effective, and reliable approach for whole genomic
UPD screening and is very useful for genetic diagnosis
of patUPD11p associated with BWS [16,17]. Quanti-
tative methylation-sensitive polymerase chain reaction
has been proven to be a rapid and highly quantitative
test for assessment of DNA methylation at both DMR1
and DMR2 at 11p15 [18].

Genotype/Epigenotype–Phenotype
Correlations in BWS

Variations in phenotypic expression of BWS have been
linked to specific molecular subgroups. Engel et al found
that omphalocele was highly correlated with loss of
methylation at DMR2 and germline CDKN1C muta-
tions but was less correlated with gain of methylation
at DMR1 and UPD11p15 [19]. In their study of patients
with BWS, 20 of 29 cases (69%) with DMR2 defects had
omphalocele, 13 of 15 cases (86.7%) with mutations
in CDKN1C had omphalocele, and none of the five
cases with DMR1 defects or 22 cases with UPD11p15
had omphalocele. Engel et al found that embryonal
tumors were confined to BWS patients with UPD11p15
and DMR1 defects, but not BWS patients with DMR2
defects [19]. Gaston et al found that BWS patients
with UPD11p15 and DMR2 defects had an increased
risk of tumors [9]. Weksberg et al found that BWS
patients with UPD11p15 and DMR1 defects carried the
highest tumor risk with preferential development of
Wilms’ tumor, whereas BWS patients with DMR2
defects had a lower tumor risk but were susceptible to
non-Wilms’ tumor [20]. Bliek et al found an increased
tumor risk in BWS patients with DMR1 defects but not
in patients with DMR2 defects [10]. DeBaun et al found

that UPD11p15 was associated with hemihypertrophy,
cancer, and hypoglycemia and that DMR2 defects were
highly associated with omphalocele and macrosomia
[21]. In a study of 200 patients with BWS (16 with
CDKN1C mutations, 116 with DMR2 defects, 14 with
DMR1 defects, and 54 with UPD11p15), Cooper et al
found that (1) hemihypertrophy was strongly associ-
ated with UPD11p15; (2) omphalocele was associated
with DMR2 defects or CDKN1C mutations but not
UPD11p15 or DMR1 defects; (3) macrosomia was sig-
nificantly higher in cases with CDKN1C mutations or
DMR2 defects; and (4) the tumor risk was significantly
higher in cases with UPD11p15 or DMR1 defects than
in cases with DMR2 defects or CDKN1C mutations [22].
Smith et al concluded that (1) UPD11p15 is strongly
associated with hemihypertrophy and tumors; (2)
DMR1 defects have a higher cancer risk than DMR2
defects and CDKN1C mutations; (3) omphalocele is
highly associated with DMR2 defects or CDKN1C muta-
tions; (4) ear pits/creases are most prevalent in CDKN1C
mutations and DMR2 defects; and (5) cleft palate
occurs only in CDKN1C mutations [23]. UPD11p15,
DMR1 defects, and DMR2 defects have all been found
in male monozygotic twins with BWS [23]. Only DMR2
defects, however, have been found in female monozy-
gotic twins with BWS [24]. This suggests that the
developmental processes (such as X inactivation and
the developmental time lag for female embryos in the
preimplantation phase in monozygotic twinning) limited
to females rather than males cause an increased rate of
epigenetic errors at DMR2 [23–25].

BWS and Assisted Reproductive
Technology

DeBaun et al [26], Gicquel et al [27], and Maher et al
[28] suggested that in vitro fertilization (IVF) and embryo
transfer, and intracytoplasmic sperm injection proce-
dures might cause epigenetic and imprinting alter-
ations at the centromeric imprinted 11p15 locus and
increase the risk of BWS. Maher et al reported that 4%
(6/169) of the patients with BWS were conceived by
assisted reproductive technology (ART) versus the
background rate of 0.997% ART births from the gen-
eral population in the United Kingdom, giving a three-
fold increase in prevalence of ART in patients with BWS
[28]. DeBaun et al reported that 4.6% (3/65) of the
patients with BWS were conceived by ART versus the
background rate of 0.8% in the United States, giving 
a sixfold increase in the rate of ART in children with
BWS [26]. Gicquel et al reported that 4% (6/149) of
the patients with BWS were conceived by ART versus
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the background rate of 1.3% in the general population
in France, giving a threefold increase in the rate of ART in
children with BWS [27]. The data reported by DeBaun
et al [26], Gicquel et al [27], and Maher et al [28] sug-
gest that approximately 4% of individuals with BWS are
conceived using ART. Molecular studies have shown an
association between IVF and BWS related to hypomethy-
lation at maternal DMR2 [26–31]. Halliday et al, in a
case-control study, found 37 cases of BWS among
1,316,500 live births in Victoria, Australia between 1983
and 2003, giving an overall BWS prevalence of 1/35,580
live births for this period [29]. Of the 37 with BWS,
four were conceived by IVF, and during this period there
were 14,894 babies born after IVF, giving an absolute
risk of 4/14,894 of having a liveborn baby with BWS
conceived by IVF. Halliday et al suggested that the overall
risk of BWS in the population of children conceived by
IVF is about 1/4,000 or nine times greater than in the
general population [29]. Chang et al studied the asso-
ciation between BWS and ART in a series of 19 patients
with BWS and concluded that no specific ART method,
specific in vitro media, or timing of embryo is associ-
ated with BWS [32]. However, Menezo et al pointed out
that the impact of methionine in the culture media on
methylation should be considered in epigenetic changes
[33]. Menezo et al suggested that DNA hypomethyla-
tion and the epigenetic problems are controlled by S-
adenosylmethionine produced by S-adenosylmethionine
synthetase, which is active in the mouse and human
oocytes, and early pre-implantation embryo and requires
methionine for its synthesis [33,34]. It is hypothesized
that the methionine content in the commercial media
used in ART is the factor affecting DNA methylation and
imprinting [33,35,36]. Moreover, ovarian stimulation
may increase the risk of imprinting disorders [32,33,37].
Sutcliffe et al, in a British survey of ART and imprinting
disorders, found a significantly increased frequency of
ART in children with BWS (2.9%; 95% confidence inter-
val, 1.4–6.3% vs. 0.8% expected) [31]. Rossignol et al
further noted that epigenetic defect of patients with
BWS born after ART was not restricted to the 11p15
region [30]. They found that three of 11 (27%) patients
conceived using ART displayed an abnormal methylation
at a locus other than KCNQ1OT1 [30]. In their study,
two patients with BWS showed demethylation of IGF2R
DMR2 at 6q26, and one patient with BWS showed
demethylation of SNRPN at 15q11–13 in addition to
demethylation of KCNQ1OT1. Chen et al reported the
prenatal identification of fetal overgrowth and omphalo-
cele, and lumbosacral myelomeningocele in two ART
pregnancies, respectively and suggested a careful inves-
tigation of birth defects in pregnancies achieved by ART,
including a sonographic screening of fetal overgrowth,

abdominal wall defects and neural tube defects, and a
molecular survey of human imprinting disorders [38].

Prenatal Diagnosis of BWS

Prenatal identification of BWS is helpful for perinatal
counseling and perinatal management, such as the
mode of delivery, pediatric care for neonatal hypo-
glycemia, airway obstruction, respiratory distress and
congestive heart failure, the risk of malignancy, and
genetic testing of family members. Prenatal diagnosis
of BWS is associated with abnormal sonographic find-
ings, a positive family history, and abnormal cytoge-
netic and/or molecular results. Based on a clinical
review of 19 prenatally detected BWS, Williams et al
suggested that prenatal diagnosis of BWS can be reli-
ably made by either two major criteria or one major
criterion plus two minor criteria [39]. The major criteria
include macroglossia, macrosomia (> 90th percentile),
and an abdominal wall defect. The minor criteria include
aneuploidy/abnormal loci, polyhydramnios, nephro-
megaly, and renal dysgenesis/dysplasia and adrenal
cytomegaly confirmed by pathologic diagnosis. Patients
with BWS are at risk for developing malignant tumors
(such as Wilms’ tumor, adrenocortical carcinoma, hepa-
toblastoma, hepatocellular carcinoma, glioblastoma,
neuroblastoma, rhabdomyosarcoma, malignant lym-
phoma, pancreatoblastoma, carcinoid tumors, con-
genital mesoblastic nephroma, renal cell carcinoma,
myelodysplasia, yolk sac tumor, and intratubular germ
cell neoplasm) and benign tumors (such as adrenal ade-
noma, teratoma, fibroadenoma, fibrous hamartoma,
ganglioneuroma, myxoma, cardiac hamartoma, choran-
gioma, digital fibroma, hepatic hemangioma, bladder
neck polyp, and bladder hamartoma) [40]. Wiedemann
reported that the overall risk for tumor development in
children with BWS was 7.5% [41]. DeBaun et al reported
that the average annual incidence of cancer in patients
with BWS in the first 4 years of life was 0.027 cancer
per person-year [42]. The relative risk of cancer was
816 for Wilms’ tumor, 197 for neuroblastoma, and
2,280 for hepatoblastoma. Hemihypertrophy was the
only clinical feature associated with a significantly
increased relative risk of cancer. Congenital cysts or
tumors in the adrenal gland or pancreas associated
with BWS have been observed by prenatal ultrasound.
Merrot et al reported the prenatal detection of a right
hemorrhagic adrenal cyst at 21 gestational weeks in a
fetus with incomplete BWS [43]. Gocmen et al reported
the prenatal sonographic findings of bilateral hemor-
rhagic adrenal cysts at 33 gestational weeks in a fetus
with BWS [44]. Izbizky et al reported the prenatal
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sonographic findings of bilateral adrenal carcinoma,
polyhydramnios, macrosomia, and placentomegaly at
26 gestational weeks in a fetus with incomplete BWS
[45]. Fremond et al reported the prenatal detection of
a congenital pancreatic cyst at 24 gestational weeks in
a fetus with omphalocele and BWS [46]. Pelizzo et al
reported the prenatal sonographic findings of congen-
ital pancreatoblastoma at 20 gestational weeks in a
fetus with BWS [47]. Visceromegaly, placentomegaly,
and placental mesenchymal dysplasia are associated
with BWS and can be detected prenatally by ultrasound.
Mulik et al reported the prenatal sonographic findings
of gross hepatomegaly, an enlarged pancreas, and pla-
cental mesenchymal dysplasia in a fetus with BWS
[48]. Drut and Drut reported the findings of nonim-
mune fetal hydrops and placentomegaly in familial
BWS with trisomy 11p15 [49]. Lage reported three
cases of fetal omphaloceles (one had diagnostic BWS
and two had pathologic features suggestive of BWS) with
placentomegaly, massive hydrops of placental stem villi,
and diploid DNA content [50]. McCowan and Becroft
reported the findings of placentomegaly, omphalocele,
and cystic hydrops of stem villi in a pregnancy with fetal
BWS [51]. Hillstrom et al reported the sonographic
findings of placental villous hydrops and omphalocele
associated with fetal BWS [52]. Placental mesenchy-
mal dysplasia is characterized by an enlarged hydropic
placenta with numerous cyst-like villi mimicking partial
mole, histologic features of enlarged stem villi with cis-
tern formation, and a lack of trophoblastic hyperplasia
[53–57]. Cohen et al suggested that multiple cystic
changes in the placenta (by prenatal ultrasound), a nor-
mal or slightly increased level of maternal serum β-human
chorionic gonadotrophin and an elevated level of mater-
nal serum α-fetoprotein (with maternal serum screen-
ing), and the presence of a diploid fetus are indicative of
placental mesenchymal dysplasia [58]. Placental mes-
enchymal dysplasia can be a characteristic prenatal sono-
graphic feature of BWS [50–52,56,59,60]. Placental
mesenchymal dysplasia is associated with BWS, intra-
uterine growth restriction, and fetal demise in the major-
ity of the cases but can also be associated with normal
fetuses [57,58,61]. Cohen et al reviewed 66 reported
cases with placental mesenchymal dysplasia and found
that 15 cases (23%) were associated with BWS [58].
Pregnancies with BWS fetuses, placentomegaly and
placental mesenchymal dysplasia may present maternal
hypertension and proteinuria [51]. McCowan and
Becroft suggested that gestational proteinuric hyperten-
sion in association with ultrasound findings of placen-
tomegaly with or without cystic changes in the placenta
should be considered in the diagnosis of BWS [51].
Reish et al suggested that prenatal detection of fetal

overgrowth, polyhydramnios, increased abdominal cir-
cumference, omphalocele, and placentomegaly should
alert one to the possibility of BWS and prompt the
molecular and cytogenetic analysis of BWS [62]. Grati
et al reported the detection of a paternal segmental
UPD11 by molecular investigation of amniotic fluid cell
cultures in two fetuses with apparently isolated omphalo-
cele and suggested that the necessity of molecular
analysis in all cases with fetal omphalocele [63].

Conclusion

This article provides an overview of BWS including 
the genetics, genetic diagnosis, genotype/epigenotype–
phenotype correlations, association with ART, and
prenatal diagnosis. Omphalocele is an important so-
nographic marker for BWS. Prenatal detection of
omphalocele, fetal overgrowth, polyhydramnios, in-
creased abdominal circumference, placentomegaly
and/or placental mesenchymal dysplasia should alert
one to the possibility of BWS and prompt the genetic
investigation and counseling for BWS.
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